{ "cells": [ { "cell_type": "markdown", "id": "5dce612a-d480-446f-a188-2a66143a6713", "metadata": {}, "source": [ "# UCC Functions" ] }, { "cell_type": "markdown", "id": "e6ccfc1b-7609-449d-87d2-d003e61e6962", "metadata": {}, "source": [ "## Overview\n", "\n", "In this notebook, we will introduce the basic functions of the `UCC` class. We will use `UCCSD` as a typical example. Other classes such as `kUpCCGSD` share the same interface.\n", "\n", "We will show that, along with nice high-level interface, the `UCC` class also offers great flexibility and allows users to easily build their own algorithms." ] }, { "cell_type": "markdown", "id": "67eb6493-0847-4cd2-af67-321ddafa88e5", "metadata": {}, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": 1, "id": "8a3c0d3e-721a-4e98-a06f-d9b5c994ebe6", "metadata": {}, "outputs": [], "source": [ "from tencirchem import UCCSD\n", "from tencirchem.molecule import h2" ] }, { "cell_type": "markdown", "id": "ecdc7fdb-6243-49e3-9c41-87937e0e4658", "metadata": {}, "source": [ "TenCirChem provides a set of molecules in the `molecule` module for debugging and fast-prototyping.\n", "\n", "TenCirChem uses PySCF `Mole` object to handle molecules. In other words, custom molecules can be built with exact the same interface as PySCF." ] }, { "cell_type": "code", "execution_count": 2, "id": "2043eb93-f371-4832-981f-e30078f856dc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "h2" ] }, { "cell_type": "markdown", "id": "ce3461a5-3022-495a-afe4-3c3cae27c10a", "metadata": {}, "source": [ "## Hello world\n", "\n", "This cell illustrates a simple UCC calculation." ] }, { "cell_type": "code", "execution_count": 3, "id": "157f4dab-9416-4611-ac85-181f8913e048", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "################################ Ansatz ###############################\n", " #qubits #params #excitations initial condition\n", " 4 2 3 RHF\n", "############################### Circuit ###############################\n", " #qubits #gates #CNOT #multicontrol depth #FLOP\n", " 4 15 10 1 9 2160\n", "############################### Energy ################################\n", " energy (Hartree) error (mH) correlation energy (%)\n", "HF -1.116706 20.568268 -0.000\n", "MP2 -1.129868 7.406850 63.989\n", "CCSD -1.137275 -0.000165 100.001\n", "UCCSD -1.137274 0.000000 100.000\n", "FCI -1.137274 0.000000 100.000\n", "############################# Excitations #############################\n", " excitation configuration parameter initial guess\n", "0 (3, 2) 1001 1.082849e-16 0.000000\n", "1 (1, 0) 0110 1.082849e-16 0.000000\n", "2 (1, 3, 2, 0) 1010 -1.129866e-01 -0.072608\n", "######################### Optimization Result #########################\n", " e: -1.1372744055294384\n", " fun: array(-1.13727441)\n", " hess_inv: <2x2 LbfgsInvHessProduct with dtype=float64>\n", " init_guess: [0.0, -0.07260814651571333]\n", " jac: array([-9.60813938e-19, -1.11022302e-16])\n", " message: 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'\n", " nfev: 6\n", " nit: 4\n", " njev: 6\n", " opt_time: 0.010929584503173828\n", " staging_time: 3.337860107421875e-06\n", " status: 0\n", " success: True\n", " x: array([ 1.08284918e-16, -1.12986561e-01])\n" ] } ], "source": [ "uccsd = UCCSD(h2)\n", "uccsd.kernel()\n", "uccsd.print_summary(include_circuit=True)" ] }, { "cell_type": "markdown", "id": "2a442afb-91f0-45c3-9e99-a8d658ea30f1", "metadata": {}, "source": [ "UCC class has a convenient method `print_summary` for a quick glance of the calculation.\n", "The summary contains 5 parts:\n", "\n", "- Ansatz.\n", "- Circuit. TenCirChem by default uses a compact circuit for excitations (see the Circuit section below), in which multi-control gates are involved. The circuit part also gives an estimation of the FLOP required for a full statevector simulation of the circuit.\n", "- Energy. Includes optimized UCC energy along with HF, MP2, CCSD and FCI energy for reference. \n", "- Excitations. Includes optimized UCC parameters and their initial guess. See the documentation for the convention of excitation operators and configurations.\n", "- Optimization Results. This is simply a modified SciPy `OptimizeResult` object.\n", "\n", "`print_summary` by default will not print circuit information since it is sometimes significantly more time-consuming than other parts.\n", "\n", "One may print different parts of the summary separately using corresponding standalone method such as `print_ansatz`." ] }, { "cell_type": "markdown", "id": "01b20f71-155f-48f8-856f-6291c726fc0b", "metadata": {}, "source": [ "## The Circuit\n", "\n", "TenCirChem uses TensorCircuit `circuit` object for quantum circuit." ] }, { "cell_type": "code", "execution_count": 4, "id": "44c78fae-fe0a-4bb7-8443-e177af236a63", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "circuit = uccsd.get_circuit()\n", "circuit" ] }, { "cell_type": "code", "execution_count": 5, "id": "1859849e-d495-45c1-80ea-c4b8b50f628b", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3UAAAEvCAYAAADihOiYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXxUlEQVR4nO3deXxU9b3/8ddM9oQECFuABMIW9oDsCIggVBR3xaVotbXaRYq3WrC3/fWqt7e1KtW6tBWtdWkrpe4LLqC4IAKyg+xbgEACBBJCNpLMzO+PrwECWWYmM3PmTN7Px2MehJmzfGbmzDnn810dHo/Hg4iIiIiIiNiS0+oARERERERExH9K6kRERERERGxMSZ2IiIiIiIiNKakTERERERGxMSV1IiIiIiIiNqakTkRERERExMaU1ImIiIiIiNiYkjoREREREREbU1InIiIiIiJiY0rqREREREREbExJnYiIiIiIiI0pqRMREREREbExJXUiIiIiIiI2pqRORERERETExpTUiYiIiIiI2JiSOhERERERERtTUiciIiIiImJjSupERERERERsTEmdiIiIiIiIjSmpExERERERsTEldSIiIiIiIjampE5ERERERMTGlNSJiIiIiIjYmJI6ERERERERG1NSJyIiIiIiYmNK6kRERERERGxMSZ2IiIiIiIiNKakTERERERGxMSV1IiIiIiIiNqakTkRERERExMaU1ImIiIiIiNiYkjoREREREREbU1InIiIiIiJiY0rqREREREREbExJnYiIiIiIiI0pqRMREREREbExJXUiIiIiIiI2Fm11ACJyLo8H3FVWR+EbZww4HFZHISJ2ZcfznjRM1wWR0FFSJxKG3FXw6ZNWR+GbCTMhKtbqKETErux43pOG6bogEjpqfikiIiIiImJjSupERERERERsTEmdiIiIiIiIjSmpExERERERsTEldSIiIiIiIjampE5ERERERMTGlNSJiIiIiIjYmOapE4kg63d9xi+emVDrufjYJNLbZTFpyC1cNeZnREXpZy8iIiISSXR3JxKBJgy+iRF9LsWDh8IT+Sxa/TLPvHsP+w5v4efXPWt1eCIiIiISQErqRCJQr85DmDT05lP/v/z8n3L7I3344Ou/8f0pv6NVi3YWRiciIiIigaQ+dSLNQEJsEn26jsLj8XDw6C6rwxERERGRAFJSJ9JM5H2bzKUkplociYiIiIgEkppfikSgiqoyjpcW4PGYPnXvLnuGnQfW0idjBOntsqwOT0REREQCqFnU1BUUFDB79mx69uxJfHw8GRkZ3H333ZSWlnL77bfjcDh4+umnrQ5TgszthrKTUFEFHo/V0QTXywvv57oH2jHtwfbc+Vg27y77C2MHXMODt71tdWiWcrmh9CRUVlsdiTXcHiivhLJK87c0P+5vfwMnm8F50BeFJYe58jcteX/Fc1aHEtaOFedz2a8SWbjqJatD8Zvb03zuBaRuZ94LRNIxEPE1devWreOSSy4hPz+fpKQk+vXrx8GDB3nyySfZtWsXx44dA2Dw4MHWBipBs+8ofLkd1u6FKpd5rkUcjOoJY3pB6yRr4wuGqSPv5ILsaVS7q9iTt5H5nz1MwfFcYmPiTy3zu3/eiNvj5je3/OfUc8Vlx7hjTn/uvGwOFw2ZbkXoAed2w+aD5hjYmnf6+Q4pMDYLhnWDhFjr4guFQ8WwdDt8vdvcyADERcPwbjAmCzq2sjQ8CTKPB3YdNr+BDftPJ/StEuH8XjC6ByQnWBujN4I5ZcuLH/4/WiW14+Jh3/d6nYLjB3n+/V+yctsHlJ8soWtaf2648D7GD5rm1fpfbXqHpd+8yZa9yzhStJ/EhJZ0bd+PaeN/wfA+U87a1wEWrX6Zlds+5MCR7ZRVFNMhNZMRfS7lxgm/JCWpTZ372JyzjH9/+gc25SylvLKENskd6dN1FLNveImY6NMnPrfbzZtfPsGC5XPJL8yhVVI7Lhh0Pbde/L8kxJ6+SKampHHZqB/zwoe/5oLsacTHJnr9eVkt9xgs3QGr90Dlt/cCSXEwsrv5HbRNtjY+CS63B7Z+ey+w5SDU5HLtks294IjukBhnaYhN5vB4IilHra2goIDzzjuP3Nxc7r33Xu6//36Sk82v9pFHHuG+++4jOjoal8tFUVERKSkpFkcsgVTtgn8vh1U59S/jcMBVQ2B8n5CF5RVXJXz6pO/r1dz03Dn1UaZd+ItTz2/K+Yqf/2Us47Ov59c3/xswCdydfxzInZfNYeJ5NwHwu3/dhMtdzf/c8qrP+54wE6LCLDk6XgbPfW4u5vVJiIEfXAC90kIXV6h4PPD+eli0qeHlxveBK4eA0xGauCR0KqrgpS/NTUx9opzw3VEwtFvo4qpLY+e9mvNbXVO25OR/w6Uj7/BrypYjRbnc/FAmP7rsj1wz7m6v1ikuO8ZdTwyjqOQw115wD+1aprN47Sts2P05917/d6YMbzw5vP7BNBLjUzi//5Wkt+vNibJjfLTqBfYf3sptU/6P6Rf9+tSy7y57hr++fTcj+k5lQOZYEuOT2brvaxauepHU5DSenrmS1JTaJ7EPV77A46/+kD5dRjJ24LW0SGjF0eMH2bhnCQ/e9lathOzPb9/NW18+yZgBVzOizyXsO7SFt5Y+xcBu43j4zo9xOk837Mo/lsP3/tCdu658iivH3NXgewyH64LLDa+thGU761/GAVw6CCb1N/cFEllKKsy9wN6C+peJi4bbxkHfTqGLK9AiuqZu5syZ5ObmMmPGDObMmVPrtdmzZ/PKK6+wfv16unXrpoQuwrjd8PJSUyrdEI8H3lxtSnAm9A1NbFbon3k+k4bcwqLVL3PV2Jn0zzyflMRU7p32PA/Nm0529/Fs3vsVG3Z9xnP3fmN1uAFRUgFPfwxHTjS8XHkVPPMp/HQi9OgQmthC5Z218OmWxpf7fKupxZ42XDc0kaTKBc9+CruPNLycyw3/+MqUXA+zOLHzRqCnbFmwfC4OHEz4tnDLG/MX/4H8Y3v43++/w+h+lwMwZcTt3P30aJ597xeMz55GQlyLBrfx39Nf4byeE2s9d+WYGfzkT+fxz0UPcsXon5Kc2BqAgd3G8c9f7a2VuF068g76dBnJ46/dwaufz+FHl5++z9l7aDNPvv5jvjP8+9xz3XM4Gvhh5+Rv4u2lTzF2wDXcf+vrp55PS+3Gn9+eyWfr/83E8757xvOZDOg2jgXL5zaa1FnN44FXlsHqnEaWAxasB5cHpgwMRWQSKmWV8OePIe94w8udrIbnPoM7LrRvYhexfeq2bNnC/Pnzadu2LQ899FCdywwdOhSAQYMG1Xp+z549XHHFFSQnJ9O6dWu+973vcfTo0aDHLIGzbGfjCd2Z3l4DeUVBCycsTJ/0G5zOKF766H9OPTe8zxTGZ1/Pw/Nu5qk3fso90/5WbzMeu3lzdeMJXQ2XG1780tTuRopted4ldDW+2gHf5AYvHgm9jzc1ntCdad5yOF4evHiC5ewpW3702CC++7suuN3uc5b9fP2rTJ7lYNGql08998WGV8lKH0brFu293ufida/QqU2PUwkdQJQziivH/IwTZcf4euv7jW7j7IQOID42kZF9L6PaVcX+I9tOPZ+Z1v+cmjiACwfdAEBOfu3CuFc/n4MHD3dMfQSHw0F5ZSkuV92diT9dNw+Px8M14/6r1vOXjryD+JhEPl7zz3PWGdH7Evbkb2Tf4a2Nvk8rrc5pPKE704cbIKeB2hyxn3fXNp7Q1XB74B9LTYJnRxGb1M2bNw+328306dNp0aLu0rKEBNOJ4Myk7sSJE0yYMIHc3FzmzZvHs88+y5IlS7jsssvqvEBI+PF4TJtpXy31Yx076dy2JxMG3cjanZ+wcfeSU8/fefkcDhzdyfA+lzCy71QLIwyc4nJYt8+3dU5U+FYQEO78+Q34s46Ep2oXLNvh2zouNyxvoIlaODtzypZLRt7BkaL9rN6x6JzlPvz6eZLiW3LBt/3eCk8cYv+RbfTuMsLrfR0tzqPg+AH6dhl1zms1z23bv9KftwFAwXFTutI6ufGmA0fqWXbl1g/IaNeHDbs+59Y/9OSKX7fgsl8n8qvnLyX3SO0DY9v+lTgdznM+g9iYeLp3Gsz2Ot5L366jAdMkNpwt2db4MmeL9HuB5qSsElbt8X2dNTlBCSfoIjapW7x4MQATJkyod5ncXHMyPDOpe/bZZzlw4ABvvfUWl112GdOmTeOVV15h+fLlvPPOO8ENWgIip8D7Upkzrdxj39IZb9100a9xOpy8tPB0bV1CbBIdU7vTLS1y2px8vdvcoPpqqY83weHqeBl8c8D39bblQ4GXtZsS3jYdgOIK39f7akf4j4xaM2VLUckR9uRt5Mk37qo1ZcukITcTF5PAh18/X2u9w0X7WbNjERPP+y5xMaZQd++hzQB0atPD6/0fLTYdFNu07HzOa22/fa7guB8/QGDXwfV8ufENBnYbR8fUxtvCvrzwfgAmD7v11HOl5cc5diKfguID/N8/r2dUv8u5/3tv8N2Jv2bdzsX8/C9jOVacX+v9pCS1JTb63FEi2rbszPHSAqqqK2s9X/N57T3USIddC+Ueg71+NLJau9eMjin2t3rP6QHyfPGVTe8FIrZP3d69ewHo2rVrna9XV1ezdOlSoHZS99577zF27Fi6dOly6rnRo0fTvXt33n33Xa666iqfYxk2bBj5+fmNLygB0W3Edxl67SM+r3eyGgYNu4CSgt1BiMo3sdEJPDvD97PKoB4XsujR+u/Iunboy0ePBKeNYa+sXlRWh0fbreE3PEHXIdf6vN6m3QWkpw8OfEAh1q77+Yz/0X8aX7AOl1x9K3lbPwlwRBJqfS/6L/p/5xeNL3iW4+XQvVdfqitCn917e957eeH9p5KZGmMHXMPPrv4zAC0SWnFB9vV8tm4exaVHTzUp/2jlC7g9bqaMuP3UesdLTfvU5IRUr+M8WVkGQEwdSVBstBlh+GRVmdfbq1FUcoQHX7qGuJgE7pn2t0aXf/XzP/LFhleZOvLOWk05y06a7+5E2TG+e9Gv+f6U/wNg7MCrad+6K3P+831eX/I4d0x9+NT7qeu9nP1+zhwts+YzLSo53GCMVl4XMgZfxcibfJ+uqtoNIy64hKIDG4MQlYTSeVf9nh6jv+fzenvyy0lP7xWEiBqXlpbGqlWr/Fo3YpO60tJSAMrL6z6ZzJ8/n4KCApKTk+nW7XRp2ObNm5k27dzhiPv378/mzZv9iiU/P58DB/wrtRPftSnx/WJa42jhcQrC4LuKj7HPMNE18g4epMKPG5lgyPanaA5wRMVGxG81uk2x3+sWFZdExGfQ3HUp97+q4fCRo5QX+9AZL0C8Pe95M2XL1FF3smj1S3y85h9cM+6/8Hg8LFz5Aj06DSYrfegZWzMDiHg4tzDszNosgOjoWFISU4n7dtTIqupzP+PKalM9GufjOby47Bj3PTuZo8UH+b/bF5DeLqvB5d9f8TeeWzCLkX2nMuPq2olLTS0kwHeG3VbrtYuGTOex137IhjOaTcbFJlJeT3JW3/upGTjdQcMjK1l5XWjZo9TvdY8VHidP50Hb6+vnpLTOaHveC0RsUpeWlkZhYSFr1qxh9OjRtV7Ly8tj1qxZAGRnZ9caFaqwsJBWrVqds73U1FS2bfOjcfa3sUjoJMT43u7O4/HgcDhomRhNXOdzm9SEWmy0DSaNOkvHTp3CpqYuyu1fHFVlx+gcBt9/UyXH+9+yPinOERGfQXMX56zyaz2P20WbVkl4kkM/Dr23573ObXsxJGsSACP6XMKAbmP5+V/G8sTrPz41ZUv/zPPJTBvAB18/zzXj/ou1Oz4hvzCHGeNrJ0A1I2WeKDt33pMbftux1v+zu4/njz/5jDYpZmi8o3U0saxpdtm2jqaZ9TEJ3ST2H9nKg7e9XecAKmf68Ou/86fX72Ror+/wP997neiomFqvJyemEh+TSEVVGanJte8/oqNiaJnYlhPlhaeea5PSiX2HNlNZffKcJpgFxw/QMqltrVo6OP15tWxkpFErrwuJsb63I665F0hJjMKp86DtRXv8K9yqLLXuXqApOUPEJnWTJk1iy5YtPPzww0yePJmsLFPqtXLlSm655RYKCszwRqGYdNzfalTxT1klPPDG6clFveFwOMhsCzu3rA5eYD7wd546f/3xJ581eRs7tu+wfD6iGtvz4S9+tCC8Ylwmf5tp/yEg3W743btwtMS39VLiYfXnrxEVsb2tm4+jJfB/b1NH/VPDBnWN4om9Po4sECD+nvfqmrIFzOiNf3n7brbu+5oPVj5PbHQ8Fw2ZXmvdrh36A3Cg4Nxmnw/fUXuglRbfTi/QJqUjbVt2Zsu+5eesU/NcVvowr2KvSej2HtrMA7e+yfDeFze4/Idf/53HXvsh5/WcxIO3vVVnPziHw0GvjGFs3P0FR47n0qX96YlYK6tPcrz0CJ3a9jz1XO+M4azevpBt+75mYPdxp5etqmD3wXUM7H7BOfs4eNSMqJPZYUCD8Vp5XaishvvfhPLKxpet4XA46NgKtqxdouldIsDeAnj8I9/XmzSkHc/k2u9eIGIv3bNnz6ZNmzbs37+f/v37M3DgQHr16sWIESPo3r07EyeakrCzpzNo3bo1RUVF52zv2LFjpKZ63+ZerJMY698kumMbbu0iNtKrA7T3cepJB3B+z0YXswWn07/3MroXSugiRJsW0M+PguYx1nQjabK6pmyZNOQWYqPj+c/nj7L0mzcZ9+0E3Gdq1aIdmR3615mgDcmaVOtxZrPNCYNv4uDRXSzb/O6p51xuF28vfYoWCa0Y0efSU89XVJax7/BWjhbn1dr+ibJCfvnsZPbmb+L+773OiD6XNPgeP1r5Io+/dgeDe0zkf7//dq3mpmebNOQWAN5d9tdaz7+//FncHnet+C4cdAMOh4M3lvyp9rIrnqOiqoyJ59VOhAG27DWfV3aP8Q3GbKXYaBjR3ff1xvbSfJ2RoksbyPDj1n2MTe8HI7amLj09nSVLljBr1iw+//xzcnJy6NevH3PnzuWOO+6gRw8zctPZSV3fvn3r7Du3efNmLrjg3NIqCU8T+8G6vWZiaW+kt4ZBXRpfTuzB4YDLBsPfv/B+ndE9oW1y0EIKudE94aud3tfWtUpUwUakuXigGdHU2/kXs9LMw45qpmz5ZO2/2Lh7CQO7jyM5sTXjsq/jk2/nWbtk5A/rXPeC7Gn885PfcrQ4jzYpHetc5mw3TvglX2x4lYde+S7XjruHti078+m6eWzbv5J7pv2NxPjTJ5Nt+7/mF89MYPLQW5l944unnr/vucnsOLCGCYNv4kRZIR+vrj0fXP/M8+nYxmQlX216h8devZ3E+BQuHHwDSza8XmvZhLgWjBlw1an/Xzz8+3y8+mXe+vJJiksLGNBtHHvyNrJgxVwyO/Tn6rEzTy3breNArjj/Lt5e+jQPvHQNI/pcyr7DW3jryyfJ7j6+1sTjNb7e+j7d0gbWqgUMRxf2MSMglnjZCi+tJQzzIxGU8ORwwKWD4NlPvW+1MCwTOrYKYlBBFLFJHZgE7b333jvn+ZKSEnJycnA6nQwYULvpwGWXXcavfvUrcnNzSU9PB2DFihXs2rWLRx99NCRxS9O1S4Y7LoRnP4OKRhK7tJZwxwSIiQpFZBIq2Rlw7TB4Y1XjJ/PsDLh2eEjCCpnEOPjRBNMMtaiRcQpS4s2yyfUX/IsNdWkDt42FF79sPLHr2ha+P87eNRQ3XfRrPl03j5cW/g9zfvwpYAZV+WTNP+nUtifZ3euuVbpk5B3865P/Y/HaV5g2/l6v9pWS1IY/3bWUv73/S9756s+UV5bQtUM/fj3931w4+AavtrEj1zT3/3TdPD5dN++c139x/QunkrqdB9bg9rgpKS/i8dfuPGfZDq271krqopxR/O6HH/Cvj3/LZ+v+zRcbXqVlUjsuG/Vjbrv4tyTE1Z6/9ydX/IkOrTN5f8WzfL1lASlJbblqzM+49eL/xemsXX2ffyyHb3K+5K4rn/LqfVqpdRLcOQHmfgqljSR2bZPNeTAuou+Mm5++neDGUTB/RePTtfT7dlm7cnhqhjBqRlasWMGoUaPo3bs3W7durfVacXExAwcOpG3btjz44INUVFQwe/Zs2rVrx7Jly845uUl4yz8OH24wk0qf/WOOjzFNM6Zkmyab4STUfeoCYcJMwqZP3Zm2HIRF38DuOgbzS02Ccb1hfG/TZDESHS+DDzbA6pxz5+uJdsKQTLgk29z8SGTad9ScB7ccPLeAo0WcqdWdPMA0V7NSMM57W/d9zc+eGskPLvk9N03873qX+9PrP2b19oW8MHvbOQOPSG1/fefnfLHhVV6YvZ342IZH+QyX68KRE+Y3sG7fuXOYxkXDsG7mPNhCBVsRa3u+uRfYcejc11olmqbnE/vZuwtCsyyP2LjRzD1ydtNLgJSUFBYvXszdd9/NjTfeSHR0NJdddhmPP/64EjobSmsJt40zN7br9sH76818dAkx8MA1KpFrDvp2Mo8DhbD5ACzaZDrQJ8bC/7sicpO5Gi0TTcnjFUNMk+S315jfQHwM/OZKSKp7eiqJIF3amNqKoyWmgOvDDWecB6+G6AhupfD20qeJjorh4mHfb3C5Wy/+Xz5dN4+PVr7A1FHn1oSJcbQ4j/eWPcPd1z7TaEIXTtolwy1j4Koh5l7gvXWnfwP3X23OhxLZapqX5x+Hb3JNgnfy23uB31xp72SuRrO8pW0oqQPo0aNHnc02xb5aJsL4PrB4s/kRx0Y3z4Qu98gOHp1/K8dLC0iKb8msG14kM62/1WGFROfW5vHldpPUxURFfkJ3psRYOL8XfLTR/AbiopXQNTdtWsCEvvDZltPnwUhM6MorS1m++V325m/ik7X/5NKRd5Ka0nBnwdYt2vP2b4+HKEL7apPSkQUPhcfUNf5ITjCtMz7edPo3oISueUlraR5LtpljICYqMhI6UFJncSQiofXE6z/i0pF3cvHw2/hiw2s8Ov82/nz3SqvDEhEJmOMlR/j9v24iIa4F4wZexx1TH7E6JBGRoGuWSd3ixYutDkEk5ApLDrM9dxV/uGMhAOMGXsvTb87gQMFOOp8xZ5GIiJ2lpWay6NFmN1yAiDRzEVLhKCKNOVK0n9SUjkRFmbIch8NB+9ZdOFy0z+LIRERERKQplNSJiIiIiIjYmJI6kWaiXasMjhXn4XJVA+DxeDhcuI/2rTTruoiIiIidKakTaSZat2hPz85D+HjNPwFYsvF12rZKV386EREREZtrlgOliDRX/3XtXB6dfxvzFv+exPgUZl3/gtUhiYiIiEgTKakTaUYy2vfmyZ8tszoMEREREQkgNb8UERERERGxMSV1IiIiIiIiNqakTkRERERExMaU1ImIiIiIiNiYkjoREREREREb0+iXImHIGQMTZgZ+u0ufh8pSiE2CMbcHdtvOmMBuT0Sal2Cd98JNMM/D4UbXBZHQUVInEoYcDoiKDc52g7l9ERF/NZfzks7DIhIMan4pIiIiIiJiY0rqREREREREbExJnYiIiIiIiI0pqRMREREREbExJXUiIiIiIiI2pqRORERERETExpTUiYiIiIiI2JiSOhERERERERtTUiciIiIiImJjSupERERERERsTEmdiIiIiIiIjSmpExERERERsTEldSIiIiIiIjampE5ERERERMTGlNSJiIiIiIjYmJI6ERERERERG1NSJyIiIiIiYmNK6kRERERERGws2uoApG4ej4cyt8vqMLyW6IzC4XBYHYaIiIiISLOjpC5MlbldtF68yOowvFY4cTJJUTqcRERERERCTc0vRUREREREbExJnYiIiIiIiI0pqRMREREREbExJXUiIiIiIiI2ppEtJOJVVsOBQjhcDCerTz93sBA6tIQoFW1EvNKTkHsMjpWePgaqXHC0BFKTQAO3RjaPB4rKYP8xKKkAlxuio6BVImSkQot4qyMUEQkuj8dc83ILzTXR7YaYKEhtAempkBhrdYTSVErqJCKdqIDlO2HNXjh0HNye2q+XV8Ej75sTWpc2MLIHDO4CsfpFRIz847B0B2zKNcnc2coq4bdvmwtZzw5wfi/ISgOnEryI4PHAzkPmGNhxyNzE1Kd1IvTrDGN6QafWoYtRRCSY3G7Ykgdf7YDdR6C8sv5l27aAgRnmWtguOXQxSuDoFlYiyvFyeG+tSeZc7saXr3LBrsPm8dZqGNcbJvU3yZ7Y0/6j8M5acyPvjbJK2LDfPNolw3cGwLBuqr2zK48H1u2DDzaY2nlvFJaZ5G/pDujeDi4/D7q1C26cIiLB4vHA8l2w6Ju6CzXrUlACn24xjz4d4coh0LFVUMOUAFNSJxHB44HVOfDGKnOT7o+ySvhoI6zfBzeNgq5tAxqiBFm1y3x/n2w+t2bWW0dOwL+Wwdq9cMNIaJkY2BgluE6Uw6srTYLur91H4MlFcGEfuCRbtfciYi9HS+Dfy70v2KzL1jzY8QFcPBAu6qduKnahr0lsz+WGecvhn1/5n9CdKf84/GkhLN3e9G1JaJRUwBMLYdEm/xO6M20+CA8vgD1Hmr4tCY39R8131pSErobHY0qrH//I1P6LiNjBtjx4ZEHTEroaLje8vx7+/HFg7q0k+JTUia253fCPpfD17sBu1+MxJf6fbw3sdiXwSirg6Y/NIBiBVFYJf/3ENM2V8LbvqDkGShroN+ePvCJ4aqESOxEJf1sOwrOfnR4MLFB2H4G/fNJwfzwJD0rqxNbeXGP6zwRt+6tNUzwJT9UucxHLPx6c7Ve64LnP4JCXfbMk9I6WwDOLA38jU6Pg2+1XBmn7IiJNlXsM/v6Fd2MJ+Lv9578wBekSvtRbQGxrWx4s2ebbOvdMgZQEKC6Hxz70bp1Xv4bu7aFlgu8xSnAt2mRqaXzh6zFQUQXzlsHMyeBUMVhYcXtM3xFfmgb5cw7IKzIDr1w5xK8wRUSCptoFrywzA795y5/z4M5D8Pk2mNDXvzgl+JrFLUpBQQGzZ8+mZ8+exMfHk5GRwd13301paSm33347DoeDp59+2uowxQcVVeZmzlcpCWZuqhQfErSySpPYeQLQV0sCJ/eYGdnLV/4cAzkF5mIm4eWrHb73HfHn+wf4bIv6WIpI+Fn4DRws8m0df8+D769Xy5VwFvFJ3bp16xg4cCCPPvoo+fn59OvXj6qqKp588kluuOEGtmzZAsDgwYOtDTRIXH9/karvXIr7w4XnvObxeKj+xX1UTb0Cz56c0AfXBF9sM8OQh8o3ubDbxn2rKk7A7q+gqsL8v6oCjuwCj42bUry7LjCDonjrgw2mMEHCQ2W1ucEIFQ9mqgwRf1WWQc7Xtc/D+VvB7UMNi8iZTlSYEZ9DpcoV2vOu+Caim18WFBRw+eWXk5+fz7333sv9999PcrKZUfGRRx7hvvvuIzo6GofDQXZ2tsXRBofzlum4l6/ANfc5HEOH4Gh3epx+9xtv4dmwEecPbsPRLdO6IH3kcpsS+lD7cgf06BD6/TZFZRls+wQOb69d0+iuhvVvQnwKdB8DnfpbF6M/jhSb5rehVFkNq/bA2KzQ7lfqtnZv6Edk23MEDhZqgnLxTXUlbF8M+VtqJ3DuavjmPYhNgsyRkHGe5scU3yzfGbx+dPXZuB+Ol2nKn3AU0TV1M2fOJDc3lxkzZjBnzpxTCR3A7NmzGTRoENXV1WRmZpKSkmJhpMHjiIkheta9UFGB67E/nXresz8X94sv4+jTG+e0a60L0A+bD0BRCGvpamzYb9qf28XJElj5ChzaVn/T0Ypi2PwB7FkR2tiaaqkFST3Al9vVDDdcWHkMiHir+iSsng8HvzEJXXIH6HkB9JkMmSNMQldZapK+7Z/q/CLec1tUwO32wLKdod+vNC5ik7otW7Ywf/582rZty0MPPVTnMkOHDgVg0KBBp56rSQJHjBhBXFwcjggoNnP06onzxuvxrF6De8EHeFwuXI/MAY+HqFn34oiKsjpEn2w6YM1+Xe7Q1w75y+OBdW9CeZF3y+9aYpI/u7DqGMg/DsdKrdm3nHaiwvcBcgJl80Fr9iv2tPE9OHEIYhJgyPUw4maTzKUPMsnd2Duh14Vm2f1rIHedldGKneQdD203lDPpPBieIjapmzdvHm63m+nTp9OiRYs6l0lIMD1Ez0zqdu7cyeuvv05aWhrDhw8PSayh4Jx+E3Tvjuu5v+H+8zN4tm3Hedv3cGSkWx2az3IDPB+ZLwI9F1qwHN1jbiR8sWeFPUqJK6rgyAnr9m/l8SfGfosSOjCtBE5UWLd/sY/ifHMudjhhyDRI7XJu80pnFHQdZhI8MH3uNGy8eMPK+5GDhaFv9imNi9ikbvHixQBMmDCh3mVyc3OB2kndBRdcQF5eHu+88w6TJk0KbpAh5IiOJnrWPVBZhfu9BTgG9Md5zVVWh+WzapcpnbKKXW7o/SntLTkMx21QE3nA4u/ALol9JMsttHb/ViaVYh+53w4o0T4Lkts3vGyXIaY27+QJKNgV/NjE/qy8H6l2m6leJLxEbFK3d6+ZMbpr1651vl5dXc3SpUuB2kmdM5InokpKgpgYABzDh+Gw4XstLre2dKjQBk3vPB44muPfukd3BzSUoLCqucmp/dvgGIh0Vn8HVh+DYg9H95h/Ow9sfFlnNHTsV3s9kYZYfR60YmwDaVjEjn5ZWmqO9vLyuke2mD9/PgUFBSQnJ9OtW7egxjJs2DDy8/N9WscTGwtz/xywGDweD64/Pg7VVdAlA/cr/8Y5/gIcnToGZPtZvbJwVAZ/KLoWbbsxZdaSel+vmVCzPinxp/994Or6l6tvQs68Q0dITz/Py2itERudwLMz/Os9Pfevz/PKjfcHOKLAyhx+I8Oum1Pna419/9D0Y+Dtdxfw3zf8yMtow8+lv1pJYsuO5OXnkZ5uzybmw6Y9Ruaw6+t8LVDnAKj/GPj1/7ufnUuf9zLa8BMJx4Ad/PWnW0mIbUG8l+Ow1Sz3xmvv8Ncf/DR4gUlE/AbG3v5P0rIurPO1UJwHf3jnj8nd8J53wYahcD0G0tLSWLVqlV/rRmxSl5aWRmFhIWvWrGH06NG1XsvLy2PWrFkAZGdnB30wlPz8fA4c8HFkh/g4YgIYg/utd/Cs34Dz+7fiHD2K6rt+huuPjxM15+GAvP+DeQeh4mQAIm1YSmXDn0rNhJqNcTq9W+5sVZUVvn+XIeZ0+F8De/TYobB/f8nd6p8w0NvvH/w/BkpPHA/7z6ghLpfr1L92fR99TtTfBjvY5wCAY0cP2/azg8g4Buyg4mQpCbEtTs1L15ia5QqLCvS9BFkk/AbKS0vqfS0U58Ejh/24tw0jkXAMnC1ik7pJkyaxZcsWHn74YSZPnkxWlplcauXKldxyyy0UFBQAoZl0PC0tzed1PLGxHAnQ/j0HDuD++4s4emfhvP46HFFROG+ejvuFl3C/9Q5RV1/Z5H106tgpJDV10bGxDb7e2JQDKfHmJOZ2Q3EDF9r6tlNdUUTnzp0bidJ6u/PX0T1tsM/rHSnbFfbvLym2/tFcvJlyoqnHgNNdHvafUUOivh3tNioqyrbvI9pT/xcXqHNAQ9tKiHHb9rODyDgG7GDvkQ20Tp7Moa3QspFGMR4PHNpq/j50Yru+lyCLhN+Aw1V/+8tQnAdbxGHbzw7C9xjwJ2eo4fB47DDene9yc3MZPHgwR48eJTo6mj59+lBRUcHOnTu55JJLcLvdfPTRRzz77LPccccddW7jgQce4MEHH8SKj6jUVU3rxYuavB2P243rnll4duwk+q9P4ejSxTzvcuG6+x48e/cRPfcvTW6GWThxMklRoSkj+N07/o9++MDVplSqqAweeNP39Uf1gBtH+bfvUDq4ETZ/5Ns6cckw5g5zog9nJ8rhN2/4v35Tj4HvjoYR3f3fv9XufwOOl0PLBHjwGquj8c+6ffBi/a2wG9TU7x/gN1dCm7oHVbaFSDgG7KBgN6x7A6Lj4PwfmDnp6nN4J2x4C6JiYdyPIbrh8ktpokj4DXyxDd7wr5Vek8+DDgf8YRrEBbJJWYhFwjFwtjC/ffNfeno6S5YsYerUqcTHx5OTk0Nqaipz585lwYIFbN9uZpA9c5CUSOR+7Q08m7fgvPXmUwkdgCMqiqhf3ANuF64/Pm5J4uqvjNTmuW9fdOgDsT42qcg4L/wTOoDkBHMStopdjoFIZuV3kBgLqQ3cnIvUaJMJialmAvK1b5hJxutSmAub3jd/dx6ohE68Y+V5sEOKvRO6SBWxzS8B+vbty3vvnduJs6SkhJycHJxOJwMGDLAgstDw7NuH+6V/4OjbB+e15xZDODK7BrwZZij0SoM1e63Zd88O1uzXV1ExMOhqWPMfcFU1vny7XmauJLvo1QFW5YR+vynx5mIm1kpNMg8rJoLv2eHcucZE6uJwwqCrYNU8M2/o0ufNCJcd+kBMHJQdh4MbTI0eQKt06DnO0pDFRjq3hvgYM3drqNnlXqi5ieikrj6bNm3C4/GQlZVFYuK51RmvvfYaAJs3b671/8zMTIYNs8+dr6NLF2IWvN3gMlE33UDUTTeEKKLAGNIV3loNJ6tDu9+eHaBDy9DusyladoShN8CGd6CiuJ6FHJCeDVkTzQ2IXZzfy5qkblRPe9RmRjqHwxwD760L/b7H9Ar9PsW+klJh2E2w4W0oPWrmEK1rHtEOfaDfxWZqAxFvxEabrgBfbAv9vs/vGfp9SuOa5elj48aNQP1NL6dNm1bn/2+99VZefPHFoMYmjYuLMSeyJdtDu9+xNryZS0mDMT+Egj3mRqK0AFzVZpLb9lkmofN2uO1w0q0ddGoNB0M4CbXz20RCwsOoHvDBhtDOW9ku2bQUEPFFUiqMug0K98H+dXBkJ+AxhRMZQ6DzILOMiK/GZIU+qev+7fVXwo+SujrYqX9Zc3VhX1ixGypDVFvXqRUMzAjNvgLN4YR2PcwjUjgcMGUg/P2L0O1zZA//h36WwGsRD+Oy4LOtodvnxQNNci/iK4cDUruax5Jn4GSJGTgla4LVkYmddUgxrZdC2SXl4oGh25f4plk2JGosqZPw16YFXBGiOcCdDjPiYVSz/LWEr+wMOK9raPbVOhGuHBKafYn3Lh1kas9CoX9nGJoZmn2JiHjrmmGmkCsURveE3k0bLF2CqFnepi5evBiPx8PUqVOtDkWa4PxekOVjU6jicjOErzfzmdWYPADS1TQmLF07zAxe4gtfjwEHZhqLeI30FXZio+GmUb7VnvlzDkiMhetHaoAUEQk/LeLh+hG+rePPeTA1SYWb4a5ZNr+UyOB0wG1j4emP4WCRd+s89qFv+xjWTU0NwlmLeLhzgjkGvB0BzNdj4LoRKpkMZ93bm6T7lWXeLe/r9x8bbY4xK6fREBFpSHaGab30zlrvlvf1PNgiDn40UYWb4a5Z1tRJ5EiMg59eFJz5WkZ0970WQEIvPRXumgRJcYHdrgOYNkKjHdrBiO6miXSgf6sJsfCTiZDZNrDbFREJtIn9gtMtpWUCzJis6XzsQEmd2F6LeHPCGZcVmO3FRsN1w03pv/rR2UNGKtw7xffmuPVpnQQ/uUgJnZ2M6A4zJkHbAPWx697OHFPd2gVmeyIiwTaxH9x5YeBaFvTvDPdMgTQbTefUnKn5pUSEuGi4djhkd4FXv4bD9c3L1ojeHU3b9DYtAhufBF9qC1Orsmynmb+srNL3bTgdpiP45eepmYkddW8Psy+FBevhy+3+TXcQHwOXZMO43qqlFxH76dcZ7psKb62BlXvAnwHdW8SZ/nPDuqkvsZ0oqZOI0qsD/PIy2J5vbuo2HWj8hBYXbU5cY3pp7hW7q5mUelg3WLfPHAP7jja+XssEs96onuo7ZXex0XD1UJjUH1bsgqU7oLC08fXSW5s5n4ZkmnOCiIhdJcaZJumXZJuCzmU74URF4+t1b2fOg4MyIDoq+HFKYOnSJRHH6YA+Hc2jogoOFML+o3CoGKqqzbxt8dEmgctINc0KdPKKLLHRpjneiO5wohz2HzOPwlKocplmtS3iTH+8jFRok6xamUiTHG8Su4v6wdES8/3nHjMT9Va5ICbKvJaRCultlMyLSORpnWSmfpmSDUeKzXnwQKEp8Kw5D35nwOlrYaimRpDgUFInES0+Bnq0Nw9pnpITTHOUfp2tjkSs4HCYfnZtk828hqv2wPFyM03BlGyroxMRCT6nAzq0NI9h3WBNzunz4OQBVkcngaJhIERERERERGxMSZ2IiIiIiIiNKakTERERERGxMSV1IiIiIiIiNqakTkRERERExMY0+mWYSnRGUThxstVheC3RqTkBRERERESsoKQuTDkcDpKi9PWIiIiIiEjD1PxSRERERETExpTUiYiIiIiI2JiSOhERERERERtTUiciIiIiImJjSupERERERERsTEmdiIiIiIiIjSmpExERERERsTEldSIiIiIiIjampE5ERERERMTGlNSJiIiIiIjYmJI6ERERERERG1NSJyIiIiIiYmNK6kRERERERGxMSZ2IiIiIiIiNKakTERERERGxMSV1IiIiIiIiNqakTkRERERExMairQ5ARM7l8YC7yuoofOOMAYfD6ihEREREmh8ldSJhyF0Fnz5pdRS+mTATomKtjkJERESk+VHzSxERERERERtTUiciIiIiImJjSupERERERERsTEmdiIiIiIiIjSmpExFpJjwe86j5W0REpLlxuyPzWqjRL0VEIlTZSVi3D/Yehf3HIL8I3N9ewIor4OEFkJEKXdrA4C7QIt7ScEVERAIurwg25kLuMdh/FArLTr9WXAFPLYL0VOjZHvp1hiibVnkpqRMRiTC5x+CLbbB2L1S56l8ur8g8vt4Nb62GwV3hgt4myRMREbErt9sUai7dAbsON7zsrsPm8flWaJkAo3vCmCxItllBp5I6kQiyftdn/OKZCbWei49NIr1dFpOG3MJVY35GVJR+9pGqshreX28uTL62KKl2w6o95jEuCy47D+J0qIiIiM0cKYZXlsOeI76ve7wcPtxoCkavHQZDMsHhCHiIQaFLtkgEmjD4Jkb0uRQPHgpP5LNo9cs88+497Du8hZ9f96zV4UkQHCyEF5bAkRNN39aS7bD5INw6VrV2IiJiH1/tgDdXN9xKxRtllfCPr2D9fvjuaIiPCUx8wWTTVqMi0pBenYcwaejNTB56C9dfOIsnf7acdi3T+eDrv1FU4kfRlYS1nAJ46uPAJHQ1jpbAnz+GnYcCt00REZFgWbgR/vN10xO6M23Yb66FZScDt81gUVIn0gwkxCbRp+soPB4PB4/usjocCaCDhTD3UyivDPy2T1bDc5/BvqOB37aIiEigfLoF3t8QnG3vPwZzPzPXxHCmpE6kmcj7NplLSUy1OBIJlCoXvPhlcBK6Gier4aUv4WRV8PYhIiLir5wCeGdtcPextwDeC/I+mkp96kQiUEVVGcdLC/B4TJ+6d5c9w84Da+mTMYL0dllWhycB8sEGOFzs2zr3TIGUBCguh8c+9G6doyXw7jq4brjPIYqIiARNlQteWeb7fHP+XAuXbIfsLtCrg+9xhkKzqKkrKChg9uzZ9OzZk/j4eDIyMrj77rspLS3l9ttvx+Fw8PTTT1sdpgSR22NKWb7JhU0H4NBxqyMKrpcX3s91D7Rj2oPtufOxbN5d9hfGDriGB2972+rQLFNZDTvyTfv4rXnmRG5neUWmuYmvUhKgVaL51xdfbje/IRHx38kScH/bhMtdDS7VgIs0ySebfC/cBP+vhfNXmOkSwlHE19StW7eOSy65hPz8fJKSkujXrx8HDx7kySefZNeuXRw7dgyAwYMHWxuoBEVFFSzbaeYpKThrEInu7cw8JOd1BadNhqv11tSRd3JB9jSq3VXsydvI/M8epuB4LrExpydd+d0/b8TtcfObW/5z6rnismPcMac/d142h4uGTLci9IA7VmJK11bsMqNZ1XA6IDvDzMvWvb118flryTbfSyYDsc+ubUO7T5FIUJgL+9fAkZ3g+faGsKoCvpwLnQZA+nmQ0NLaGEXsptoFX+4I7T4LTpjRoQekh3a/3ojomrqCggIuv/xy8vPzuffee8nLy2PNmjXk5+fz8MMPs2DBAlauXInD4SA7O9vqcCXACkvhTx/B22vOTegAdh+BfyyFl5YEdqSkcNC5bS+GZE1iRJ9LuGHCbH77/XfZlruSJ17/8allfnbNX9iUs5TFa+edeu6pN++if7exEZPQ7TwEj7xvarTKzup35vaYiUmfXAQfb7ImPn+VV8KqnNDvd+0+OFER+v2K2FnOClj9bzi83SR0ianQsiPEJpnEbu8qWPGySfxExHvr90OJBdekL7eHfp/eiOikbubMmeTm5jJjxgzmzJlDcnLyqddmz57NoEGDqK6uJjMzk5SUFAsjlUArOwnPLIZ8L5pZrt9v2mO7Q1zrEUr9M89n0pBb+Gz9fDblfAWYAVPunfY8T781g4LjB/liw2ts2PUZ/3XNMxZHGxi5x8zIjRVeNG96b52phbKLDftNc9JQc7lh3d7Q71fErvatgZ1LzN9p/WDk9+D8H8Dw6TDuRzDoakjuANUnYd3rcOKwtfGK2MmqPdbsd2senAjDLhwRm9Rt2bKF+fPn07ZtWx566KE6lxk6dCgAgwYNOvXca6+9xrXXXkvXrl1JTEykT58+/PrXv6akpCQkcUtgfLYVDvnQxnrtXtPfKpJNn/QbnM4oXvrof049N7zPFMZnX8/D827mqTd+yj3T/kZKUmTMNv3mat+GH357LZTaYB4asHaKAU1vIOKdynLY+bn5u8dYGHApJJ/R1NvhhHY9YNiN0DrD9K/b/qk1sYrYjcdj8bXwmHX7rk/EJnXz5s3D7XYzffp0WrRoUecyCQmmd+SZSd2cOXOIiori97//PR988AE/+clP+Otf/8qUKVNwh2vPSKml2mX60fkqXKvTA6Vz255MGHQja3d+wsbdS049f+flczhwdCfD+1zCyL5TLYwwcPKKYJePJd7VLvh6d1DCCbj9Fl5MrNy3iJ3kfQNuF7RoD5kj618uKgb6XwI4oHA/lKrgRKRRx0qtLYgNx2thxA6UsnjxYgAmTJhQ7zK5uaYB+5lJ3bvvvku7du1O/X/8+PG0a9eO6dOn8+WXX3LBBRcEKWIJlG15/vX7+eaAOUEkxQU+pnBx00W/5tN183hp4f8w58emSDghNomOqd3pljbQ4ugCZ6WfydnK3TChb2BjCYb8Iuv2fajYjPzljNgiQZHAOPhtX92MweBoZDCu+BRTa3dkp1mvl241RBrkTfeaoO6/yNr91yVik7q9e03Hj65du9b5enV1NUuXLgVqJ3VnJnQ1hg0bBsCBAwf8imXYsGHk50d4274w0n3ULQy5uu4mtw3xeGD4+RdRfMj6zlWx0Qk8O8P3IZ0G9biQRY/W3zmwa4e+fPRIcEaF6ZXVi8rq8GhkPuKmp+ky+Cqf18s5WER6+oDABxRg1z1c/4gKNXPv1Ccl/vS/D1xd/3L1zd3j8UC3Hr1wVYXHd+2rS3+1ksSWHcnLzyM9vXlOvKfPIDT+8pNNJMa1pJWXo+S16mySun+//CZzv/uz4AbXzDX330AkvP/07MsZNf2vdb7W2HUQmn4t/OCjT/h/N93qZbTeS0tLY9WqVX6tG7FJXWlpKQDl5XXfeMyfP5+CggKSk5Pp1q1bg9v69FNTo9G3r39F+Pn5+X4nhOK71KIiv9c9dCifY2HwXcXHJFodgs/yDh6koqrM6jAAKC/zLw63223732rN3DuNcTq9W64uBw8eoLrSnkmdy+U69a/dv2t/6TMIDZfr2y4bPg7CVVpWqu8lyJr7byAS3n9iev3tlL29DoL/18KKivKw++wiNqlLS0ujsLCQNWvWMHr06Fqv5eXlMWvWLACys7NxNNAu4sCBA/zmN79hypQpfs9ll5aW5td64p9YSv1az+2qJiXBQULnzgGOyHex0T7OhhkGOnbqFDY1dVQW+bVaRXE+ncPg+29M9clSouOS6nytsUnVU+LNRczthuIGminXtx2P20WH9m1PT7ZlM1FRUaf+tcN3HQz6DEKjqDSf5MTWFOaCN+NP1UxpUOEq0vcSZM39NxAJ7z8lKb7e1xq7DkLTr4XRTndQPrum5AwOjyfU09eGxsyZM3nqqafIyMjg448/JisrC4CVK1dyyy23sHv3bqqqqrjrrrt4+umn69xGSUkJF154Ifn5+axcuZKOHTuG8i2In1xuePDNhn+kdcnOgB+EST8GVyV8+qTVUfhmwkyIirU6CiP/OPzhPd/Xu2ooXNgn8PEE2mMf+j/q1wNXm1LJojJ44E3f1+/YEu67zL99h4P734Dj5dAyAR68xuporKHPIDT2roIdn0GLdmYqg4b61ZUfh6V/Azww+geQlBqqKJun5v4biIT3f6wE/vdt/9dv6rXwkmy4OMyGIojYru6zZ8+mTZs27N+/n/79+zNw4EB69erFiBEj6N69OxMnTgRq96c7U3l5OZdffjl79uxh4cKFSuhsJMoJo3v5vt7YrMDHItZIawm9Ovi2TkwUjGi4JXbYyLDwhi89Mma8EAm6Tv3BGQ0lR2D3V6Y/al1clbDpA8ADqV2U0Il4o3WStQPbWXkdrk/EJnXp6eksWbKEqVOnEh8fT05ODqmpqcydO5cFCxawfbsZv76upK6qqorrrruOVatW8cEHH9CvX79Qhy9NdGEfU6PgraGZvicBEt6uHgpxPjQwv2ooJNpk5NOubS3ct5I6Ea/EJEDWhebvPcvgmwVQfMaYaW43HN4OK/8NRbmmpUNW/QN2i8gZHA7rrkcOICMMr4UR26cOzMAm7713bhuskpIScnJycDqdDBhQe6S7mrntPvnkE95//31GjBgRqnAlgBJi4ccTYe6ncLCo4WXP6wo3jWp8yGmxl06t4UcT4G+fQ1llw8teOQTG+FG7a5XsDHhtJVT6MLl6IEQ7YXCX0O5TxM7SB4Or2jTDPLTVPBJaQXQcVBRDzSCyMQkw6CrTVFNEvDOsG2w+GPr99ukEyfV36bNMRCd19dm0aRMej4esrCwSE2sPeXPXXXfx6quv8stf/pLExESWL19+6rUePXrUOeWBhKeWiXD3d2DFbjOx+OHi2q/36gBjsswNslMJXUTq3h5mTzXf//KdUHLWRKVDM2Fcb8i0sObLH/Ex5mL2le+zXjTJ4K7QIgwvZCLhrOswaNUJ9q+FQ9ugvOj0azEJ0DnbJH/xyVZFKGJP2RkmufJnbuKmGBumhcDNMqnbuHEjUHfTyw8++ACAP/zhD/zhD3+o9doLL7zAbbfdFvT4JHDiYuCC3jAuC3IL4a+fmFqbFnFw1ySro5NQaJUIlw2GKQPN4CI1NXfJ8XDLGKuj898FvU2i6g7hUFcX9A7dvkQiSctO5pF1ISx7AaoqTEI37kem352I+C46ytzfvb8hdPtslwx9O4Vuf75olqeShpK6nJycEEcjoeBwmE6tMWYUX6Iitjdpw3KP7ODR+bdyvLSApPiWzLrhRTLT+lsdVkhER5mau5pjwO61s2ktYWI/+HhTaPZ3QW/oEoZ9CETsJDbpdBLnjFJCJ9JUE/vBmr1m1OtgcwA3jjJTIYSjMA0ruBpK6kQi2ROv/4hLR97Ji/dt54YJ9/Ho/NusDkmaYMpAk9z5orjcDOHszTw+Ndq2gKmDfduPiIhIsEVHwXdH+15Q68+1cFxv6NHet/2EUrMsI1q8eLHVIYiEXGHJYbbnruIPdywEYNzAa3n6zRkcKNhJ57Y9LY5O/BEdBbeOhacWNT4YTI3HPvRtH3HRcOs430YSFRERCZUubcyAZ2+u9n4dX6+F3dqZrhzhrFnW1Ik0R0eK9pOa0pGoKHN37nA4aN+6C4eL9lkcmTRFx1ZmpNfEIEz8Hh9jRhANx/l4REREaozvE7ykq2tbuONCiA3zwk0ldSIiNtelDfxsMnRICdw22yXDjEmmH6KIiEi4m9Tf9HmLjQrcNgd3gZ8GqeA00MI85xSRQGnXKoNjxXm4XNVERUXj8Xg4XLiP9q008Vgk6NgKfnEpfLgBFm8Bj5+jYjqAC/rA1EHhXyopIiJyplE9oGd7mLccdh32fztJcTBtuJnKxy50yRZpJlq3aE/PzkP4eM0/uXj4bSzZ+DptW6WrP10EiYmCy88zc9gt2QarcryfoDwmCoZkmuGh09XcUkREbKptspm2auN+WLoDtud7v27rRDi/l3kkxQUvxmBQUifSjPzXtXN5dP5tzFv8exLjU5h1/QtWhyRB0LEVXD/SJHjr98O+Ath/zAz5XOUyy0Q7Ia2V6S/XpY2ZxNVuFzAREZG6OB0wqIt5HDoO3+Sa62DuMThaero1S2KsKchMTzUjW/btGL5TFjRGSZ1IM5LRvjdP/myZ1WFIiCTEmqYoo3qcfs7tNv/a9aIlIiLiiw4tzaOGxwNuj0n8HDafs/ZMSupERJoRJXMiItKcORwQFUHJXA1d3kVERERERGxMSZ2IiIiIiIiNKakTERERERGxMSV1IiIiIiIiNqaBUkTCkDMGJswM/HaXPg+VpRCbBGNuD+y2nTGB3Z6IiIiIeEdJnUgYcjggKjY42w3m9kVEREQk9NT8UkRERERExMaU1ImIiIiIiNiYkjoREREREREbU1InIiIiIiJiY0rqREREREREbExJnYiIiIiIiI0pqRMREREREbExJXUiIiIiIiI2pqRORERERETExpTUiYiIiIiI2JiSOhERERERERtTUiciIiIiImJjSupERERERERsTEmdiIiIiIiIjSmpExERERERsTEldSIiIiIiIjampE5ERERERMTGoq0OQOrm8Xgoc7usDsNric4oHA6H1WGIiIiIiDQ7SurCVJnbRevFi6wOw2uFEyeTFKXDSUREREQk1NT8UkRERERExMaU1ImIiIiIiNiYkjoREREREREbU1InIiIiIiJiY0rqREREREREbEzDFUpEKzsJuYWw/ygcPgFlleb58kr4cjukp0KnVhCrX0JE8njgeLn5/vcfg8LS2sfAyt3mGOiQAk4VcUmEKqkwx//+Y1Bw1nlw2U7zG+jYEqKjrI1TJFjKKyH329/A4eLav4El28xvoHNr3QuIvenwlYjjdsOWPJO0bT0InjqWqXTBayvN3zFRMDQTxmRBRmooI5VgOVkNa3LMMXCgsO5lKl3wr2Xm7+R4GN3TPFonhSxMkaCpdsHGXPMb2HW47mUqXTB/hfk7PgaGd4cxvSCtZejiFAkWtwe25cHSHbDpgCnkO1ulC15fZf6OdsJ5Xc29QNc2oKl3xW6U1ElE2ZYHr34NBSXer1PlguW7zKNXB7h+JLRLDl6MEjxuDyzdDgvWQ0WV9+udqICF38CiTTCqB1xxHiTEBi9OkWBavw/eWGVqqb1VUWVqLJZsgwHpMG04tEwMXowiwbTrsCmwOFzs/TrVbli5xzy6tYMbRqqAQ+xFSZ1EhIoqeGcNfLWzadvZcQgeWQCXDYZxvcGpkjrbKDgB/14BOw/5vw2PxzRH23LQXND7dgpcfCLBVlJhWiCs29e07XyTa26Krx4Kw7upxkLso7Ia3ltnCifqaqXjrT1HYM77cEk2TOir5vliDzpMxfZOVMBTi5qe0NWocsGbq+GVr8DlDsw2Jbj2FsBjHzYtoTtTURnM/dTcGIjYwdESePyjpid0Ncor4ZVl8NaauputiYSb0pPw54/hiyYmdDWq3fDuOnjxS9OcWSTcKakTW6s5idfXb6opVuXAP78yffQkfO0/Bn9dfLrjeyC9vkqJnYS/wlJTsHXUh2bn3vp8qynkUmIn4ay80lwH9h4N/LY37DeJnQp5JdwpqRPbcnvgxSWQfzx4+1i7Fz7cGLztS9OUVJgaNV/6z/nq9VWmOaZIOKp2wbOfmdrlYPlimxlsQiQceTzwj6VmdMtg+SYX3lkbvO2LBIL61IltLd1u+sD54p4pkJIAxeWmuZ43Pt5kBg7o0sb3GCW4XltpEjtf+HMMzF8B903V4CkSfj7aCHlFvq3jz2/gnTXQpyO01SBSEma+3g2bfSx48+c38MVWyM6AHu19j1EkFJpFTV1BQQGzZ8+mZ8+exMfHk5GRwd13301paSm33347DoeDp59+2uowxQdHS+BdP0rNUhKgVaL511tuD8xbpjb14Wb9Pv/6D/lzDBSVwdtrfN+XSDDtPwqfbPZ9PX9+A5UuMxCRmmFKODleZpoH+8qf34AHmLfcDMYiEo4iPqlbt24dAwcO5NFHHyU/P59+/fpRVVXFk08+yQ033MCWLVsAGDx4sLWBBonr7y9S9Z1LcX+48JzXPB4P1b+4j6qpV+DZkxP64Jrg083mJiNU8o6bdvV25HbBoe2w5lU4WWqeO1kKOz6HsiJLQ/ObxxP6ZrErdpu+S2I/nm/nq/r7F6ZkHqC4wtTABqM/bqgs2mQKnUJl5yHYXc+cd9IwjwcKdsO6N2ufh7d+DCUF1sZmZ59vC27z+7MVnIA1e0O3v0Byu00z0mcW1z4Pvrnat6kfJHxFdPPLgoICLr/8cvLz87n33nu5//77SU42bUceeeQR7rvvPqKjo3E4HGRnZ1scbXA4b5mOe/kKXHOfwzF0CI52bU+95n7jLTwbNuL8wW04umVaF6SPKqrMPDKhtnQHDMkM/X6b4ngebHgHTp446wUP7F1pHp2zofdF4IyyJES/7Dnie5OzpvJ44KsdMHVwaPcrTVNwAp7/4tzjpWb6imU7oV8nuGWMvZrXFpWZycVD7csd0KND6PdrZ6VHYf3bUHZ2ny8P5K4zj/ZZ0H8KRNnoGLRalQtW7Ar9fr/cDiO722uqj9xj8MKScwdT8njMYEifb4VhmXDDKIix0b2A1BbRNXUzZ84kNzeXGTNmMGfOnFMJHcDs2bMZNGgQ1dXVZGZmkpKSYmGkweOIiSF61r1QUYHrsT+det6zPxf3iy/j6NMb57RrrQvQD2ty4KQFzR92HQ7uoCyBVnQQVs+vI6E7y4ENJvHz2GhkL6sGbVi+SyOg2UnBCXhiYeMFAJsPwl8+gZMhLPFvquU7rWkKuX6fmUZGvFN6FFbOqyOhO8vh7bD2dXDZ6Bi02vp9ZgTsUMs9ZkZdtovcY96NjrsqB/72mbqa2FnEJnVbtmxh/vz5tG3bloceeqjOZYYOHQrAoEGDTj23ZMkSJk2aRMeOHYmLiyM9Pb1WM007cvTqifPG6/GsXoN7wQd4XC5cj8wBj4eoWffiiLJXsYyvg6MEUqDmQQs2VxVseAvcXia/BbsgZ2VQQwooq76HExVqpmIXHo8pmfY2Adl/DN7wo2+OVaw6D7o9pqZcGudxw/q3oNrLY7DoAOxcEtSQIoqV12O73AtUu+Bvn3tfEL4t3wy+JPYUsUndvHnzcLvdTJ8+nRYtWtS5TEKC6SF7ZlJXWFjIwIEDefLJJ1m4cCEPP/wwmzZtYvTo0eTmWtDWJUCc02+C7t1xPfc33H9+Bs+27Thv+x6OjHSrQ/NZMIctDud9+yJ/K1T6OMR57lrT/y7cFZfD8XLr9m+nEtrmbNdh3/vLrdrj+2iqVnB7rD0X7Q/CXGCR6OgeKPPxGDy4EaotqH2yIyvPxXa5DmzY7/t0J1/tNE1bxX4iNqlbvHgxABMmTKh3mZok7cyk7oorruDxxx9n2rRpjB8/nunTp/PGG29w/PhxXn/99eAGHUSO6GiiZ90DlVW431uAY0B/nNdcZXVYPquogiONNCcMJrucyHPX+b7OyRJTYxfurE6s7XIMNHdfbvd9HZfbmj46vjp6wpom6DVybTy4TCjtX+f7Oq4qyPNjRNPmptoV+n7VZ7L6OuQtf86DpSdhnU0Hg2nuInaglL17zRHZtWvXOl+vrq5m6dKlQO2kri5t2pgJyqKj/fu4hg0bRn5+vk/reGJjYe6f/dpfvZKSICYGqqtxDB+Gwxm4nD6rVxaOysqAba8+ia0zuPSXy+p9vWbumfqkxJ/+94Gr61+uvrlrduw5SHr6CC+jtYbD4eSFu/0Y6x/43f97ite/ejjAEQVWlyHXMuKGJ+p8rbHvH5p+DPzr329x91UzvIxWrDJl9pe0aJPp83p/efldbv3XTwIfUAC16TqUCT99u87XQvEbWLpiHb+95TIvo22+nrhjLS2T2vm83nNP/pu/L/pFECKKHHFJbbj8f9bX+3qw7wUOHCoiPX2Al9Fa56rf7iA61od5G771wKPPs/7d+4MQkTQmLS2NVatW+bVuxCZ1paVmzODy8rrbac2fP5+CggKSk5Pp1q3bOa+7XC7cbjd79+7lv//7v0lLS+P666/3K5b8/HwOHDjg20rxccT4tbe6eTweXH98HKqroEsG7lf+jXP8BTg6dQzI9g/mHYSK4LcZaeVKbPD1mrlnGuN0erfcORxRvn+XIRYf488bM6pPusP+/bXqWX9vb2+/f/D/GDhZVR32n5GAIyrOr/Wq3c7w/36Te9T7Uih+Ay434f8ZhYGYqHi/1nNXOfT5NiKpdcOjBAX9XsAZbYvvyJ+EDuBktccW709qi9ikLi0tjcLCQtasWcPo0aNrvZaXl8esWbMAyM7OxlHHuLTjx48/VZPXs2dPFi9eTLt2vpe41cTiK09sLIHsi+5+6x086zfg/P6tOEePovqun+H64+NEzXm4zvfvq04dO4Wmpq5V6wZfL26kr1VKvDmJu91mfhZft+NxV9G5c+dGorRetauK6CjfiwUcMe6wf38pyUn1vtbY9w9NPwZio51h/xkJuCr9m1QwylMZ9t9vauuW9b4Wit+A0xH+54lwUFFVQmJ8cuMLnsUTZY/rjJViE1s1+HrQ7wVc4X+eAKiqKCYm3vfR3WOd1bZ4f5HIn5yhhsPjsWJQ5OCbOXMmTz31FBkZGXz88cdkZWUBsHLlSm655RZ2795NVVUVd911F08//fQ562/bto2ioiL27NnDo48+yuHDh1m6dCldunQJSfylrmpaL14UkG15Dhyg+sczcGR2JepPf8QRFYVr3nzcL7yE8yc/IurqK5u8j8KJk0mKCn4ZQbUL7vuP/8PKP3C1KZUrKoMH3vR9/e7tYOZ3/Nt3KK1707/+ccOnQ8vAVN4Gza5D8NTH/q/f1GNgcn/NVWcHb642cy/56ubzYdi5jTfCyvEyuN+PY7dGU38Dg7vAbeP8339zsWWhmTLGV9lXQfueAQ8norjd8N+v+t+3tKm/gfTW8ItL/dt3KL30Jaz1o3/cTy+CLP9zC7FIxA6UMnv2bNq0acP+/fvp378/AwcOpFevXowYMYLu3bszceJEoP7+dL1792bkyJHceOONfPLJJ5w4cYJHHnkklG8hIDxuN65HHwO3m6hZ95yavsB5/XU4snrh/vuLeA7mWRyl96KjoGMr6/af0ca6ffsifbDv6yR3gBQbnMQ7p4KVc76mp1q4c/HamF6+r5MUZxKWcNcysfF+c8Gk34B3/DkPxyVD2+4BDyXiOJ3QueGGO0Fll9/A2Czf12mfAr06BD4WCb6ITerS09NZsmQJU6dOJT4+npycHFJTU5k7dy4LFixg+3YzJFBjg6QAtGrVip49e7Jz585ghx1w7tfewLN5C85bb8ZxRi2jIyqKqF/cA24Xrj8+jp0qbDMsPJlauW9ftMn0PUHrNgoC0BI36OJjoJ3vrUkCxi7HQHPXPgXOq3ucrHpd1M8UHNmBzoPhL7m97wlat5EmYZHGWVnIapffQPd20NPHBO07A+xxLyDniuhTR9++fXnvvfc4ceIEJ06cYMWKFdx5552UlpaSk5OD0+lkwIDGRy86fPgw27Zto0eP+junhyPPvn24X/oHjr59cF57zTmvOzK74rx5Op6N3+B+6x0LIvRPf4uaeUc5oXeYN02s4XDAoKsh0csLT6/x0N6Pmg2rWHUMdGwFrevv0idh5qZR0KO9d8ue3xMm9A1uPIFk1W8gMRa6+de9vFkaMNX7ArYuw6Bz4+XM8i2rfgMOB/TtZM2+feVwwPfHQadW3i1/8cDwb34u9YvYgVIasmnTJjweD1lZWSQm1h726Oabb6Znz54MHjyYVq1asWPHDh5//HGio6P5+c9/blHE/nF06ULMgrqHva4RddMNRN10Q4giCox+naB1IhT6OKFmUw3KgGT/BjOzRFwSDL8Jti2GQ9vAU0c/xIRW0GMMpNnoZhZM07pPt1izX5Vg2kdsNPx4Iry7Fpbvgso6+t8kx8PEfnBhH3t9t0Mz4e01oZ+vbkR387mKd6LjYOj1sP1zyPsG3HVM6hzXwrSU6DzIXseg1Xp1MDXyh4tDu9/+nSG1RWj32RRJcfCzyaaf8ZocqK7jXqB1EkwZCCPtVXchZ2mWp+aNGzcCdTe9HDVqFC+//DJPPPEEFRUVZGRkMGHCBH71q1/VO+edhJbTCef3ggX1T1ETFGP8aJtutZgEU1Lc60JzQ1FSAO5q83z7XpCaac+biLbJ0KcjbA1hd9C4aJVg2lFMFFwzDC4dBCt3w96jJrmLjzGl7QPT7dPk8kxxMSbBWuLH5MJN4U9fxeYuKhb6Toae4yBvExQfMpOMx8RB2x7moSaXvnM4zPH45urQ7teOv4GEWPjuaLjiPPh6NxwshCqXeX5gujkX6hi0PyV1Z5kxYwYzZmhi4XA3rjd8tRMK/Ru13GfZGaZtul3FJUHmSKujCKzLz4Pt+eAOUXfQS7JNIiD2FB9jzhuRNGjj5AGwOgfKgj+bDABje1nbn9XuYuKhy1Cro4gso3vC0h2hq63r09E87KrFty0TJDI1y7y8oaRO7CE+xvSXCYXEWJg23J41WpGsc2v4zsDQ7KtbO7igd2j2JeKtlAS4dlho9pWaZApSRMJJbLSpgQrF9TkuGm4YqXsBCV/NMqlbvHgxHo+HqVOnWh2KNEFWGozv49s6xeVmXhpvJuitcf1ISLZw+HCp3+T+0LWtb+v4egwkxMJ3R6lpioSnIZm+j/Lp628gymlunONUUy1hKLOtuRb4wp97geuGa6AsCW8RO/m43QVy8vFQCNXk42dzu+Ffy0wTpGC4dphpsiXhq/QkPP0x5BUFftux0fCTiRrtT8JbtQue+xy2BaGPqdMB3xsDg9WlXMKYxwPzV5gBkYLh8sFwkY+Jo0ioqexZbM3phOmjTbv6gG7XYZpZKKELf0lxMGOS7zV23mz3pxcpoZPwFx0FPxxv+v4GUkyUGQ5dCZ2EO4fDtKrxtfWON9u9ZpgSOrEH1dSFKdXU+W7dXnh1pam5aYpOrUxTo3SbTC4qhssNizbBwo1NHzwlO8P0o1SzW7ETjweW7QzMVAfd2plmxxoYRezmm1z4zwoormjadtqnmHuBzAAXGIoEi5K6MKWkzj8nKmDBOtMcs6qO+YAa0iIeLsgyI0PZcYhzMQ4UmnnJ/JnuIK0lfGeA6aOkzvBiV8dK4N11sH6f7wUcrRLNOXBsL/UjFfsqPQnvrzfTmFT6eC+QFAdjs2BSf1NbLWIXSurClJK6pik9aeZiWZMDB4tMLU5d4qJNs72RPczk4krmIseRE7B0O2w6YP6uT3I89Oxg5j7s2V7JnESO4+WwfCes2weHjtef4CXEQre2phl7v85mYBSRSFBWaRK71TmmwK++e4HYaOjSxsz9eF5XJXNiT0rqwpSSusCpdpnE7nCxqb1zYKZE6Nga2iWb/nMS2corIbfQzGtY7TI3rUlxpoltywQlchL5KqvNTW3BCXMedDohIcZMDdKmhX4DEvmqXZB/3Dxq7gVio6FTa2ifrJppsT8ldWFKSZ2IiIiIiHhD5RIiIiIiIiI2pqRORERERETExpTUiYiIiIiI2JiSOhERERERERvTQClhyuPxUOb2cXIVCyU6o3Bo+DQRERERkZBTUiciIiIiImJjan4pIiIiIiJiY0rqREREREREbExJnYiIiIiIiI0pqRMREREREbExJXUiIiIiIiI2pqRORERERETExpTUiYiIiIiI2JiSOhERERERERtTUiciIiIiImJjSupERERERERsTEmdiIiIiIiIjSmpExERERERsTEldSIiIiIiIjampE5ERERERMTGlNSJiIiIiIjYmJI6ERERERERG1NSJyIiIiIiYmNK6kRERERERGxMSZ2IiIiIiIiNKakTERERERGxMSV1IiIiIiIiNqakTkRERERExMaU1ImIiIiIiNiYkjoREREREREbU1InIiIiIiJiY/8fKbq1XyRMAGYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "circuit.draw(output=\"mpl\")" ] }, { "cell_type": "markdown", "id": "aeb43d9d-053a-4981-a667-9f770cba670b", "metadata": {}, "source": [ "TenCirChem uses the compact circuit for excitations described in [https://arxiv.org/pdf/2005.14475.pdf](https://arxiv.org/pdf/2005.14475.pdf).\n", "To decompose the multicontroled $R_y$ gate into elementary gates, use the `decompose_multicontrol` argument." ] }, { "cell_type": "code", "execution_count": 6, "id": "9f9397d7-c0f9-435c-9b83-dd1b465a7478", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABroAAAJxCAYAAAAdC2LsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACaeElEQVR4nOzdd5xU9b3/8ffMbG/0srBLX3qTjmCBgA17VzQx11xz77UlGjA39+aqv5sbg5IYW6ImGtMkJBZUiB0LXRBQBKS3ZXeBhQV2l20zc35/fJUiuzAze2bOnJnX8/HYB7pzzvl+YL7zne/5fs73+/VYlmUJAAAAAAAAAAAAcBmv0wEAAAAAAAAAAAAAkSDRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAV0pxOgAAJ7MsKdjgdBTh8aZKHo/TUQBwIze2eaGibUSk3Pi5oL5Hzo3vd6ioF5FzY73g/Y6cG9/vUFEvIuPGOsF7HTk3vt+hol5Ezo31gvcbTiHRBcShYIP0weNORxGeCXdJvjSnowDgRm5s80JF24hIufFzQX2PnBvf71BRLyLnxnrB+x05N77foaJeRMaNdYL3OnJufL9DRb2InBvrBe83nMLShQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHClFKcDAGCfz7Z8qB89PeGE32WkZaugXW9NGnazLh93p3w+PvYAEhftIJIdnwFQB0AdSG68/6AOgDoA6gCSETUaSEATht6gUX0vkiVLFZVlevfTP+npN+7Rzr3r9cOrn3U6PACIOtpBJDs+A6AOgDqQ3Hj/QR0AdQDUASQTEl1AAirqPEyTht909P8vOfM/dOvDffXmJ7/Xdy/4P7XMaedgdAAQfbSDSHZ8BkAdAHUgufH+gzoA6gCoA0gm7NEFJIHMtGz17TpGlmWpZP8Wp8MBgJijHUSy4zMA6gCoA8mN9x/UAVAHQB1AIiPRBSSJ0q++wPKyWjscCQA4g3YQyY7PAKgDoA4kN95/UAdAHQB1AImKpQuBBFTbcESHqstlWWYN3jeWPK3Nu1epb+EoFbTr7XR4ABB1tINIdnwGQB0AdSC58f6DOgDqAKgDSCZJkegqLy/Xww8/rFdeeUXFxcVq166drrzySv385z/XXXfdpeeff15PPPGE7rjjDqdDBWzxp3fu15/euf+E340feKXuvOIphyICgNiiHUSy4zMA6gCoA8mN9x/UAVAHQB1AMkn4RNfq1at14YUXqqysTNnZ2erfv79KSkr0+OOPa8uWLTpw4IAkaejQoc4GiqjZXyUt2Sx9ul2qrJG8HqltrjSmlzSyu5SZ5nSE9psy+jadPfga+YMN2la6RrM/nKHyQ8VKS804esz//eV6Ba2gfnrz34/+7vCRA/rXmQN028Uz9a1hU50I3XaWJe3cLy3cJK3bLdU2SKk+qbC1NK63NKhA8iX4Iq5VtdLSLdInW6WKavO7FlnSqO7mc5CX6Wx8iL49h6RFm6TPdkpVdVKKV+rQQjqzlzSsm5SWgL0B2kEc7+ARafEm0xc4dMT0BVrnSKN7SqN6SNnpTkdoPz4DJ9p1QFq0Ufpit1RTb/oCnVtJ44qkwYVSis/pCO1HHTgmGJTWl5o6sK1cqvdL6SlS747S+N5Sz/aSx+N0lPajDhxT55dWbjffBXsPS/6glJMuDeli7gk65Dkdof14/090qEZaullavs30BSSpVbY0uofpD+RknPp8N6IOnKikwtwTrdklVdebe6JOLaUzi6ShXU3fINFQB44JWtLGMtMX2LLXfC+kp0i9Opj+YO+O9AUSvQ7U+6XVO007UHbQ9AWy06TBXUwdyG/pdIRoroQe3i0vL9cll1yisrIy3XvvvSotLdXKlStVVlamGTNmaN68eVq+fLk8Ho8GDx7sdLiwWdCSXlsp/ew16b21ZoDfH5TqA1LJQemVFdL9r5obnkTTuW2RhvWepFF9L9R1E6brf7/7hjYUL9djL//b0WPuvPI3Wrt9keavmnX0d0+8ersGdB+fMF9iNfXSMx9Ij74tLd8qVddJgaBJdm3aI72wQPrZ61LxAacjjZ6PN5h6Pne1ualvCJif8krpn59LD7wqvb/WJASRePwB6cUl0kNzTV04VGM+A3V+kwD+2zJTB74sdTpS+9EOQjJt25ufS/9vjvTOF+bhl6/7AmWHTD/h/lelZQm4DzOfAaOuQfr9R9Iv3zQPfVTVHusLbNkr/WmR9L+vSTvKnY7UftQBY1+lNGOe9LsPpXUlpn8YCEpH6s1gx5PvSb9+xzwQl2ioA8b6EunBV6XZy0zSu85v6sChGtM/eugNadZS029KJLz/hmWZ8YAHXzV9gvLKY/dEew9Lb6w2fYEFG5yO1H7UAaPeL/1xofTwP80A9+HaY/dE28qlvy6RHpxj+gWJhjpgVFSbvuDT86U1xaYP8HVf4PNd0m/nS798yzwcl2ioA8amPeZz/uIS0+//ui9wuFZauNH0Ff+8yHw3wL0SOtF11113qbi4WHfccYdmzpyp3Nzco69Nnz5dQ4YMkd/vV7du3ZSXl4CPcCUxy5L+8Yn0wXrpVOP39X4zwPHJ1piF5ogB3c7UpGE368PPZmvt9sWSzKaT917znJ6cc4fKD5Xo489f0udbPtQPrnza4WjtUdcg/eb90w/gV1SbAY7dFbGJK5beX2sSuoFg08cELXNz99aamIWFGAkGpRcWnr59O1IvPfuBmfGYyJKxHYQ0Z6X09hrT1jXFHzADnIs2xi4uJyTjZ6Debx54+aL41McdqjF9gURMdh0vGetAeaX0+DvSnsOnPm5HufT4uyYRmsiSsQ6s3W2SnEfqT33csi3mvjB4in6z2yXj+y+Z5Nbc1afuCwSC0ssrpPnrYhaWI5KxDvgD5oGXVTtOfVxVrfTb96Ute2ITl1OSsQ4cPCI99s7px3yKD5jjDiXggy/HS8Y6sLHMJDmr60593Kfbpec+OvUYGuJbwia61q9fr9mzZ6tt27Z66KGHGj1m+PDhkqQhQ4ac8Ptt27bp0ksvVW5urlq1aqVvf/vb2r9/f9Rjhn0+3W6WKwzV35aapz0T2dRJP5XX69Mf3/6fo78b2fcCnTP4Ws2YdZOeeOU/dM81v1dedhsHo7TPayvNE5uhqG2Qnv84sb7Mtu0zCaxQvb3GfPkjcXz45ekHd78WtMxTjqfr+LldsrWDyW7NLumjL0M//qUVUunBqIUTF5LtM/DPz6St+0I7tiEgPfdx4s3o+KZkqgOWZRIXlSEmr/ZVmhk/iS6Z6kBVrenfnCrBcbzPd0kfJeCsnuMl0/svSRtKzYzuUL2+Stqe4A89JFsdeHdt6Pe5/qDpC9Q1RDcmpyVbHfjr4tBnalVUSy8ujm488SCZ6kBtg/SHMMb7viw1s4DhTgmb6Jo1a5aCwaCmTp2qnJycRo/JzDQb0xyf6KqsrNSECRNUXFysWbNm6dlnn9WCBQt08cUXK5jIj3clmI/DvEEJWma99kTWuW0vTRhyvVZtfl9rti44+vvbLpmp3fs3a2TfCzW63xQHI7TPkTqz9no49leZZU0SxcIIZiaE+7lB/AoGpQVh1oE6f+LPbk2mdhDht2mWFf7nxm2S6TNQ5zdLFYbjcI3ZyzCRJVMd2LHfLNMbji+KTZ8wkSVTHfhkq5nZGY6FG0NPjLlRMr3/UmT3N5HcR7lJMtUBfyD8GftH6qWVp5n95XbJVAdKKsySdeHYUGaWOE9kyVQHVmyTasJMXi/alFgPwieThE10zZ8/X5I0YcKEJo8pLjaPuh+f6Hr22We1e/duzZkzRxdffLGuueYavfjii1q6dKlef/316AYNW+w6EP5NrWSWq0j0tVhv+NZ/yevx6o/vHHtqIzMtW/mte6h7x0EORmavT7ZF9l4myk1NVa3ZcyJca3ebJ5jgfutLI3svF21M/P3akqUdTHZ7DoV/UyuZG6HaBH+KN1k+Ayu3R/ZeLkzwB5+k5KkDkSxHainxH36TkqMOWJYZqArX/irpywR6+K0xyfD+S9KBqsiW5l61I/GXMU2WOvDZLqkqghUrEmVc4FSSpQ5E8j3QnPPcJGnqQASf58M1ZnUQxI5lWaqurlZ1dbWsZgxKpdgYU1zZscM8gtG1a9dGX/f7/Vq0aJGkExNdc+fO1fjx49WlS5ejvxs7dqx69OihN954Q5dffnnYsYwYMUJlZawJFivdRl6vEVfPDPu8I/XSoGFnqWp/mFOBoiAtJVPP3hH+N+uQnufq3UeabhC6duintx+OTjavqHeR6v3xsZjxiGsfVbfh14R93uqNe1Xw7WFRiCi22nYfo3P/7aWwz7MsafKl31bZhvlRiAqx1HfiXRp4/vSwzyuvkrr37CN/fWwznpG2eY1xsh1sTDy1jcmkYMilGnPjb8I+r94vjRh3vg6WOL9eBX2B5hl62c/U68xbwj5vU3G1Cgr62B/QadAO2m/SD95Vy/x+YZ/311c/0L9fcnMUIgof7UDkUjJydfmD6yM69877HtKGD5+yOaLTs6sdiLc2QHKmXuT3m6Rxt7wQ9nmBoDRu0hXav325/UGFiTageQZd+F/qc+6/h31e8f6gCgq7xvwJQPoC9pvwH6+pTdfhYZ/3yptLdfflV0chovDRDkTO403RVQ9tj+jc+/7f41r79sP2BoQmBYNBlZaWSpKGDh2qVatWRXSdhE10VVebQbqamsY/WLNnz1Z5eblyc3PVvXv3o79ft26drrnm5AHyAQMGaN26yHYmLSsr0+7dETxKhIi07R/5JjP7Dx5WeRy8VxmpWU6HELbSkhLVNoS48HGUDfZH1iH1pGQkxGc1pU3ka+4cqqxOiH+DZNe1Lsx1eo6zd3+Fag6HuKmNTdzY5oUqntrGZNKiZ+Q3VgcOVqo0DtpBN34u4qm+92uIbL0Rb6ozfQE3vt+hcqxeeFMjOs0f9MRNX8iN9SJe2oGslh0jPvdInZ92wGZO1IusgsjLO3ioKi7aATfWiXhpAySpV7hrl37F4/WqbM8+BRpiu4GxG9/vUDlVL4LyRXxePLQBkjvrRby0A6kZjW9lFIoah/oCkPbsiWBplq8kbKKrY8eOqqio0MqVKzV27NgTXistLdW0adMkSYMHD5bH4zn6WkVFhVq2bHnS9Vq3bq0NGyLbwKZjx8g72QhfVrrn9Ad9g2VZ8ng8apmbrvTOnaMQVXjSUjKdDiFs+Z06xcUTG5KUovqIzvPXHlbnOHj/mysvK7KBHUnKzUxJiH+DZJfui3xB6bYtcxTMTbMxmtNzY5sXqnhqG5NJdnr4q3N/3RdokZMubxy0g278XMRTfU/1RLYGZUONM30BN77foXKqXgTrI3vwxxOsjZu+kBvrRby0A96UjIjPzUgJ0g7YzIl6kZMZ2QC3JOVlp8VFO+DGOhEvbYAkpXkjm60SaKhVx/ZtbY7m9Nz4fofKqXph+SNMtgRq4qINkNxZL+KmHfB4FAw0yOsLf4ws3edMXyBZHT+jq0OHDhFfx2M1Z+HDOHbXXXfpiSeeUGFhod577z317t1bkrR8+XLdfPPN2rp1qxoaGnT77bfrySefPHpeWlqapk+frp/97GcnXO+WW27RkiVLIk52IXYqa6UHXg1/48BOraRpF0qe8PNktgvUSx887nQU4Zlwl+SL7dh4k9YWS7/7KPzzzuotXTXS/nhiLRCUHpxj1hUOR1aa9MAVUlrCPgKRPPYckh6aG/55ffOlf5tofzyn48Y2L1Tx1DYmk5p66f5XpPowxzfa5ko/uUTy0heISDzV9017pKfeC/+8UT2kG8ee/ji7ufH9DpVT9eLtNdKbn4d/3vVjpDE97Y8nEm6sF/HUDvz2fWlDBDsI/OQSqX2e/fGcjhvf71A5US/q/dL9r5o+QThaZEr/c7nki4Md7d1YJ+KpDdi5X/rVW+GfN7SLdMtZ9sdzOm58v0PlVL34YL302srwz7tyhHR27FeybpQb60U8tQPPfSStKQ7/vB9dKBW0tj8eNK66ulo5OWYGXlVVlbKzsyO6Thx8dUfH9OnT1aZNG+3atUsDBgzQoEGDVFRUpFGjRqlHjx6aONGM5B2/P5cktWrVSgcPHjzpegcOHFDr1tRwN8jNMB2TcI0vio8kF5qvXyepVQRt4rje9sfiBJ9XGtsr/PNG9yTJlSg6tJCKIngIZnyCfAaAzDRpePfTH/dN44riI8mF5uvVXuoQwUA17WDiGNMr/M9zZpo0rPEtnuFCkfTt+3R0JskF+6WlmIcXwnVmUXwkudB8XdpIhREM4yXKuABMG5AS5uTONJ80MoL7CMSnSPr23dqS5HKrhP36Ligo0IIFCzRlyhRlZGRo+/btat26tZ555hnNmzdPGzdulHRyoqtfv36N7sW1bt069esX/mbGcMa3+kupYXyZtc2VhneLWjiIMa9XOn9QeOcM7SJ1bBGdeJwwrkjKCWPFlqy0+HliCfY4b2B4A3yFraX+naIXDxBr5/aT0sNI3rfKkkZHMCCG+OTxhN8X6N/JDIohMbTINP2hcHyrPw/9JJIBncMbqPJ6pMkDoxcPYu/sPiaBHaq8DOnMCB4YRPy6IMy+QM/25mEZJIbsdOmcMMc5zu0XXruB+FbUUereLvTjPTJjKXCnhE10SSZpNXfuXFVWVqqyslLLli3Tbbfdpurqam3fvl1er1cDB55Yey+++GItXLhQxcXH5jUuW7ZMW7Zs0SWXXBLrvwIi1KmV9J3xUkoINbxllvT9c6X0yLc1Qhwa0zP0L6ee7Z1Zpiia8jJNvc4KoYOWkSp975zIZsEhfhV1lK4bbTpqp9M+T/rXc02SGEgUHfKkfzk7tAdfcjOk2yZIWenRjwuxM6ybdPHQ0I7t2kb69vhoRgMnXD5cGlgQ2rFn9jKJLiQOn9f0b0KZoeWRWbayV+TbQiAOtcmR/vWc0B58yUqT/nWClOu+7XBwCgMKpKtGhHZs51am78hKP4llypDQZ2uP6C5dMDi68SC2vB7p1rOl/JanP9Yjs51Jf7bmcq2kHNJau3atLMtSUVGRsrKyTnjttttuU35+vi677DLNnTtXL730km644QaNGjVKl112mUMRIxIDC6TbJ0k9msjcez1mFs8PzpfasTxFQrpoiElgtc1t/PWMVGlCP+nfJybm07uFbaS7zzdPqDfVV++bL901WerBU2sJaXRPM8BT0Krx11N8ZjmHH5xnkqNAoumTL905uemlPD0eaVCB6QuEcvMD95k0QPr2uKYHutNTpLP6mD5jBg89JRyfV/qXs8wT/dlNJLJbZklXDJeuGcXgZiJqkSndfd5Xy1c1MfpR0No87BDJMneIfz3amzrQJ7/x1z0ys/9+cH5ky9wh/p3VxySw8ptYwSXNZx52uHNy098VcC+vV7ppnHn4KbeJVW/yMqVLzzDjRyxjnnhyMsy419heTT8E2amldOs5LGPudgk4tHt6a9askXTysoWSlJeXp/nz5+vuu+/W9ddfr5SUFF188cV69NFH5eVRd9fp3k666zyppEL6dLv08QapIWAGNX5yidQi67SXgMuN6mGeytlYJq3dLS3dbOpAZqr0wJXhLWvlRh3yzI37/ipp+Vbp/XXHPgM/upAkbzLo39nsW7djv/TZTmnhRlMHMlKln17GzRwSX5c2JolRdkj6dJv04ZfH2sEfX8xs1mQwrJt0Rldp0x7pi2JpyeZj7eADV5DgSnRer3k6e9IAafVO6e/LpPqAGdi8aZwZ4GY/nsSWnW4GLy8bJn2yVfrnZ6YNSEuRbv+W+Z4gyZnYOrUyDzfuPSyt2CZ9sP5YX2D6FDPzC4ltcKF5uGnrPunzXdLiTcf6Av9zeWgrocC9vB7TDzi3r7SmWJq15Fhf4Max0qBC+gKJLjPNrHhzyVBp+TZp3upjdeDfJprxY/oC7pfgQ7yNO1WiS5J69uypuXPnxjIkRFmnVuZnxTbpUI3pzCRjkqt43yY9Mvs7OlRdruyMFpp23Qvq1nGA02FFnddjZi71zZc+32nqQFpK4ie5jtcmxwzyLNl87DNAkit5eDxmQ9VubaWV200dSE8hyYXk0rGFNGWoGeT8uh10Y5Ir1O/yNz95Tn/74BeygkEN7TVRd135G6X4UrVq83w9988fq6auSh6PR6P7TtGtF/3i6ANdf/tght5d8Uel+NKUlpqh2y97XH27jFL5oRLN/Pt3tadiu1J96erctkh3X/W0WuaEsei9gzweqXdH8/PZzmPtIEmu5JHiMw8/vbFKqq8xAx6DC52OKny0AZHLTjerOXy43rQBmalS17ZOR4VYap9nVv1YtuVYX8CNSS7agch4PGbbgp7tpdU7jvUFSHIljxSfefhpzqfH+gJDQ1zWMJ7QBkQuK106p680f92xOsAKR4kjiYZ5jzldogtIVI+9/H1dNPo2nT/yFn38+Ut6ZPYteuru5U6HBQARC7WTf6rj6htq9X9/vV479qxTemqmWua0111X/lad25rdyJet/6deePu/FQwGFQz6dc2503TeiO+c9jwgGkL5Li89sE0vvP1T/fbulWqV20H/88Jlmrf0WV027nblZrbSf039m/Lb9FB9Q62mPztJ7376J50/8hZt3r1abyz+jX7/o7XKTM/Re5/+RU/OuUNP3vWJfF6fbpr0Uw3sbjayenbuND07d5qmX/+CA/8K+BptYPKhDcA30Q4kH9oBfBPtQHKhDQAal5QTM+fPny/LsjRlyhSnQwFipqJqrzYWr9CkYTdJks4adJX2Hdyl3eWbHY4MACL3dSf/hfs26roJ9+mR2bdEdNxFo2/TH6Zv0DP3fKaxAy7Tr/7xPUmSZVmaMesmTbv2BT1zz2r977/M1a9f/r6O1Fae8jwgGkL9Ll/w+Usa2/9Stc7rKI/Ho4vH/Js+WD1LktSr8xnKb2M2oklLzVDPTkO1p2K7JMnj8cgfbFBtfbUkqar2oNq2KJAktcrtcPSmVpL6dhl99Dw4hzYwudAGoDG0A8mFdgCNoR1IHrQBQNOSMtEFJKN9B3epdV6+fD4zkdPj8ah9qy7ae3Cnw5EBQGRC7eSf7ri01AyN7neRPF8tyt2vy5gTO+wej6pqD0qSjtQeVl5WG6WmpJ/+PMBmoX6X7z24Ux1aHVuHpWPrbo1+3x84XKYFn7+k0f0uliT17DREV531Q938UHfd8LMCvfLxo7rj8idOOi8QDOi1RU/qzAGX2fnXQ5hoA5MPbQC+iXYg+dAO4JtoB5ILbQDQtKRcuhAAALjfqTr5xy+VEepxX3t14WMa+1WH3ePx6L+nztaDf7xSGWnZqqqp0P3ffkWpKScv5n/8eUC8q649rJ/+4RJde+509SkcIckscbJwzSt64b7Natuik+YselI/+8t1+vXtC4+eZ1mWnnjlP5Sb2UpXjL/bqfAh2kA0D21AYqAdQHPQDiQG2gFEijYAiYZEF5Ak2rUs1IHDpQoE/PL5UmRZlvZW7FT7ll2cDg0AGnXXE2O1u3xTo6/99oerolLmi+//XCXlm/Xw99+XJAUCfv31/Z/p/u+8osE9ztaGXcv1P3+4VM/eu0Ytsts2eR4QDaF+l7dv2UUl+7cc/f+yA9tPOOZIbaV+8vsLdOaAy3T1Ofcc/f3Cz19W9/xBatuikyTp/JHf1VNz7lSDv/7oQMZTr92lvYd26cHvzDm6YTWigzYQ30QbkHxoB/BNtAPJh3YAx6MNAJpGogtIEq1y2qtX52F6b+VfdP7IW7Rgzctq27KADUIBxK3H71xyytdTU9JD6uSHejPwjw9nauEXr+jh295TRlqWJGlzyWrtP1yiwT3OliT1KRypti0KtHn3Kg3vPbnJ84BoCPW7/KxBV+kHvxmvb09+QK1yO2ju0qd17tDrJUk1dVX6z99foBF9LtDUSf99wnkd2/TQ2yv+oJq6KmWm52jZurkqaNf72E3tnLtUUr5ZD9wyp9EneGEv2kB8E21A8qEdwDfRDiQf2gEcjzYAaBqJLiCJ/OCqZ/TI7Fs0a/7PlZWRp2nX/sHpkAAgYqF28kM57qWPfqUPVs/SjNveU05my6O/b9+yUAcqS7Vjz3p17dBPu8s3q3T/FhW263PK84Boaeq7/Jf/+J7G9r9UZw64VPlteug75z2oHzw1TpI0pOe5unjM9yVJryx8TBt2faLa+motXPOKJOnsIddo6rf+S+MHXqGNu5br9sdGKDUlXRlp2frPG1+UJH2xbZHmLHpChe376s7HR0uS8lt31wO3vBrrfwJ8hTYwOdEG4Hi0A8mJdgDHox1IPrQBQOM8lmVZTgcBxMr9r0iHaqQWmdKDVzodTdMC9dIHjzsdRXgm3CX5XPAwh1vqQLQk+98f8VkHmtPm7dq7QY/MvkWHj+w/2snvnj9I0okd/VMdt+9gsW78v0Llt+6hzPRcSVJaSrqeuGuZJGn+qlmaNf/n8nq8ClpB3TDxPzXxjBtPe57knrYxmcTjZ6Ax9AWiJx7rQKTvd7y3gVL81Yt4fP+bQjsQHfFaB2gHYide68A30QZETzzWAe6JYice3/+m0A5Eh5vqQDKorq5WTk6OJKmqqkrZ2dkRXYcZXQAAwLUK2/dpcjmPe6/5fUjHtWtZoHcfafq5n4ln3KCJZ9wQ9nkAEG20gQBoBwDQDgCAxI5xAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcKUUpwMAcDJvqjThLvuvu+g5qb5aSsuWxt1q77W9qfZeD0DyiFabFw9oGxEpN34uqO+Rc+P7HSrqReTcWC94vyPnxvc7VNSLyLixTvBeR86N73eoqBeRc2O94P2GU0h0AXHI45F8adG5bjSvDwCRoE0CTsbnIrnwfqMx1IvkwvuNb6JOJBfebzSGegGEjqULAQAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSilOB4DGWZalI8GA02GELMvrk8fjcToMAECCcNv3oGT/d6FlSfUu+idI80l0BQAAAAB7uO1+QOKewG7cFwOhI9EVp44EA2o1/12nwwhZxcTJyvZRnQAA9nDb96Bk/3dhfUC6b7Ztl4u6GddJ6XQFAAAAAFu47X5A4p7AbtwXA6Fj6UIAAAAAAAAAAAC4EokuAAAAAAAAAAAAuBKJLgAAAAAAAAAAALgSiS4AAAAAAAAAAAC4EjvDIeFZlnSgWtp7WGoImN/5A1JVrZST4WxsiI1A0Lz/B6pPrAP1fimNVjAp1PulkoPmcx8ISik+qVWW1KGF5OORDwBIeMGgtLdS2l91Yl+grkFKT3U2NgAAEH1BS9p3+OS+QG2DlEFfAABcjyFeJKR6v7Rqh7Ryh1R8QKquO/H16nrpv182A93d2kmje0q9O0pejzPxwn6VtdLSzdLa3dLuimMd2a9V10v3/V3qkCf1ai+dWSR1auVMrIiOskPS4k3Spj3SnkPmxuabUn1Sp5ZS/87SmF5Si8yYhwkAiJLqOmnZFmlNsekL1Pu/8Xq99OO/S+2O6wsUtHYmVgAAYL8j9dLyrdLnu8zYUF1TfYFcqWd7aWwvqUsbycPYEAC4DokuJJTaBundL6Qlm02H5nQqjkgVO0xSrG2uNKGvNLaIhJeb7a+S/vmZtHqnmblzKpZlkiFlh6SFm6Qe7aTzB0l98mMTK6Jj8x7p7TUmwXU6DQFpx37z8/YaaXChdNEQqX1e9OMEAERHRbX0z8+lVdsl/+n6AjKzvvcelhZvlrq2lc4bKA3oHItIAQBANByqkd76XFqx7eSHXhuzr9L8LN0iFbaWJg2QhnSJfpwAAPuQ6ELC2FgmzVpqBjciUV4p/WO59Ol26Yax5okeuEfQkhZtlN5YffIT26Hauk/67XxpTE/p8uEsX+A2dQ3S3NXSgo2RnR+0TIJ07W6T7Dqnj+RlWUMAcA3LMjO45qw0Dz9FYke59LsPpRHdpSuHS1nptoYIAACiyLLMmM4rK0J7+Lkxuw5If1ggDe0iXT2SLS8AwC1IdMH1LMvM4Hl3rT3X27pPeniedNOZPMHjFnUNpiP6Zak911u6RdpQKn1/otSxhT3XRHTtq5SemS+VVzX/Wg0B6bWVJuF169lSZlrzrwkAiK56v/TnRWaZQjus2GYeorrtXJYzBADADfwB6cUlZgsLO6zeaVYL+d65Ure29lwTABA9PKsOV7Ms86SOXUmurzUEpBcWSp9us/e6sF9dg/T0fPuSXF+rOCI98a5UUmHvdWG/PYelx9+xJ8l1vM17pKfej/xJQABAbNT7zSwsu5JcXztcIz35nrRzv73XBQAA9vIHpOc/ti/J9bWqOuk370tb99p7XQCA/Uh0wdXe/iLyZcpOx7Kkvy6xP4EC+wSD0vMLpG3l0bl+dZ1Joh08Ep3ro/kqa6Tfvi9V1kbn+sUHpN9/ePr93gAAzrAsM5MrlH0ZI1H71QM15ZXRuT4AAGgeyzLbWKwric716/3Ssx+avb0BAPGLRBdca3u59Paa8M655wLpgSvMn6EIWtKsJdKRuvDjQ/R9vNEsMRiOcOvA4Vrpb0tN5xnxxbLMvnrhJCLDff8ls5zp++vCjw8AEH1Lt4Q/kyvc74Ij9WYppCB9AQAA4s7KHWZfrnCE2xeobZD+upgHIAEgniVFoqu8vFzTp09Xr169lJGRocLCQt19992qrq7WrbfeKo/HoyeffNLpMBGGhq/WXg43+ZCXKbXMMn+G6lCN9OrK8MpB9O07LM1bHf55kdSBL0vN5vaIL6t2SJ/vCu+cSN5/ySTVWcYSAOJLRbU059Pwz4vku2DrPmnBhvDLAgAA0XO4Rnp5efjnRdIX2HVAms8DkAAQtxI+0bV69WoNGjRIjzzyiMrKytS/f381NDTo8ccf13XXXaf169dLkoYOHepsoFESeP4FNZx3kYJvvXPSa5Zlyf+j+9Qw5VJZ27bHPrhmWLRR2ns4duUt3+ru/Rn89dLuzyX/VzPT/HXS4TJnY2quN1abhGesvL7KLFmA+BAISnNimIAOBKXXVsWuPNgrUb8LQ1W87kM9dpNHn86b2eQxj93k0WszL45hVEDzzftMqovhd/M/PzNPdAMAgPjw1prY7qn89hqpKkrL5kcT9wNI9ntiJIeETnSVl5frkksuUVlZme69916VlpZq5cqVKisr04wZMzRv3jwtX75cHo9HgwcPdjrcqPDePFXq1lWBZ34na9+JGxkFX5kj6/M18t58kzzduzkTYASClrRoU+zLdaLM5grUSxvmSwuelta/IwW+GpwJNEif/MX87N/mbIyRqKi2f8P50zlSb2YQIT58vss8vRdLG0rNTEK4TyJ+FwLJrqo29t/LdX7z8BMAAHBeTb20IsbjGf6gWTYZcBvuiZEMEjrRddddd6m4uFh33HGHZs6cqdzc3KOvTZ8+XUOGDJHf71e3bt2Ul5fnYKTR40lNVcq0e6XaWgV+9eujv7d2FSv4wp/k6dtH3muuci7ACGwqk/Y5sCH4yu3u2quroVb6dLa0a6VJeDXmcJm06hVpd5h7nTltyWZn9sxyY7IzUS3c6Ey51AF3SsTvQiDZLd3izD4ZCzeybycAAPFgxTZnVl1ZvEkKslcXXIZ7YiSDhE10rV+/XrNnz1bbtm310EMPNXrM8OHDJUlDhgw5+ruvE2OjRo1Senq6PB5PTOKNJk9RL3mvv1bWpysVnPemrEBAgYdnSpYl37R75fH5nA4xLOHuyWOXhoDZq8kNLEta87p0eE8oB5vZXvu3Rzsq+zhVB3bulw4ecaZsHFNdJ23Z60zZsZ5JCPsk2nchkOzWONQX2HNY2uvAA1cAAOBETo0LHKiWdh90pmygObgnRqJLcTqAaJk1a5aCwaCmTp2qnJycRo/JzDS7Th6f6Nq8ebNefvlljRw5UmlpaVq0aFFM4o0279QbFFyyTIHf/V7eLVtlbdgo723fk6ewwOnQwrbrgLNlD+vmXPmhOlgsHdgZxgmWtHWJ1KZbtCKyT53fDDI5pfiA2bQWzil2sA3YX2USbdnpzsWAyCXSd2Ek/PVHVFNZfvoDgTgXCEolB50rv3i/1CExF4MAAMAVLEsqrnCu/OIDUmFr58qPFPcDSPZ7YiS2hE10zZ8/X5I0YcKEJo8pLjaP5h+f6Dr77LNVWmqm7TzwwAMJk+jypKQoZdo98t/5AwXnzpNn4AB5r7zc6bDCFghKJQ53ZtygeHX45xzaLVXulXLb2x6OrUoqnF0yaNcBaSDf/45yMtktmXagT76zMSAyifJdGKmlL9+vpS/f73QYQLPtOWRm2jtl1wFpeHfnygcAINntrzJ7dDll135pbC/nyo8U9wNI9ntiJLaETXTt2GF2p+7atWujr/v9/qNJrOMTXV5vwq7mKGVnS6mpkt8vz8gR8rjw73q4xmz+6ZTyKufKDpVlSXs3R3buvs3xn+ja7/B7sJ/lihx3wOk64IJ2AKeQAN+FkRo44TYVjb6m0dde/cXkGEcDRM7p/tiBamfLBwAg2Tl9T+Z0+ZHifgCSkvqeGIktYRNd1dXmDrSmpqbR12fPnq3y8nLl5uaqe/foPpI5YsQIlZWVhXWOlZYmPfOUbTFYlqXALx+V/A1Sl0IFX/ybvOecLU8ne6Yl9C7qLU999B+nyWnbXRdMW9Dk6/dcIOVlNn1+XsaxPx+4ounjDtdIv3rr5N+Xlu1TQcEZIUbrjLSUTD17x6aIzn36qef04rXx/XRPt5HXa8TVMxt97XTvv9T8OjDnjXn68XXfDzHa+HPRT5Yrq0W+SstKVVAw0ulwIjLiml+p24hrG33NrjZAaroO/OS/79fmRc+FGG38cUsdsPt7UHLfd6EvNVNX/Cyy9rwxLTsWqcvASbZd75t6FxUp0NB4vyueuOUzgKYVDLlUY278TaOvxaIv8M57H+h/brw5xGgRb2gDQB0AdcD98vt+S+O++8dGX4tFX2Dh4qX6v+9cHWK0kXPb/YDkjnsCN7UBbhsflmI3RtwcbqoDySAYPDarZfz48Vq1alVE10nYRFfHjh1VUVGhlStXauzYsSe8VlpaqmnTpkmSBg8eLI/HE9VYysrKtHv37vBOykhXqo0xBOe8Luuzz+X97nfkHTtG/tvvVOCXj8o3c4Ytf/+S0hKpts6GSE8trz7t1K9nhrZ/ktcb2T5LDQ114b+XMeb1Rr555IGKfXH/98vrsa/p10J8/6XI60B11eG4/zc6lUAgcPRPt/49+lY1vUlbtNsASao4EP+fk1NxTR2w+XtQct93YUq6uzYELCktkb/uiNNhnJZrPgNoUmanvU2+Fou+wJHqSuqOi9EGgDoA6oD7pbTZ0+RrsegL1NZUx6TuuO1+QHLHPYGr2gCXjQ9LsRsjbg5X1YEks2dP0+376SRsomvSpElav369ZsyYocmTJ6t3796SpOXLl+vmm29WebnZfHHo0KFRj6Vjx45hn2Olpanp4fwwr7V7t4LPvyBPn97yXnu1PD6fvDdNVfAPf1RwzuvyXXFZs8volN8pJtn61IyMU75++DQPjeRlmI5MMCgdrg3/OoG6SnXu3Pk0UTqvuPxLFbTtG/Z5FXW74v7vl32KXOfp3n+p+XXAZ9XF/b/Rqfh8vqN/uvXvkaqm2xq72oBTXSszTa79t5PcUwfs/B6U3Pld6Es9zaOocaZTfqe4f3pTcs9nAE3LyWh6eZVY9AW8wVrqjovRBoA6AOqA++VmNv2Abyz6Ap4Y9QXcdj8gueOewE1tgNvGh6XYjRE3h5vqQDIIBoMqLS2VJHXo0CHi6yRsomv69Ol68cUXtWvXLg0YMEB9+/ZVbW2tNm/erAsvvFDdunXT22+/fcL+XNGyYsWKsM+pDvjVav67zS7bCgYVeORXUjAo37R75Pnqg+y99mpZixYr+PwL8o4e1ewpqhs3bVS2LzbV6X9fa3o95MamlB/vgSvM0zqHa6UHXg2/7Mnj+umFHxWHf2KM7VolbXg/vHNSM6V/vP2UvCn2LhVmt4NHmn7vTvf+S82vA//9w1s05qlbwj8xTtz/inSoRsrvmK/i4vivy435dLv050WNvxbtNkCSXp/1G7XPa3zJLDdwSx2w63tQcu93YZ1fum+2bZeLuo2bNindBT1Lt3wG0LQjddJPXmr8tVj0BX74/Wt1zqONL6GL+EcbAOoAqAPuV++Xfvx3KWid/Fos+gLfv2mKXvpF9OuO2+4HJHfcE7ipDXDb+LAU2zHiSLmpDiSD6upq5eTkSJIWLlwY8XUSdre5goICLViwQFOmTFFGRoa2b9+u1q1b65lnntG8efO0ceNGSYpJostJwZdekbVuvbzfuUmeLl2O/t7j88n3o3ukYECBXz4qy2qkdxCnClo7V3ahg2WHI7+/lJIe3jmdh0je+P4ekiS1yJRyTj2xL6qcrH8wnPwcpqdIbXOdKx+RScTvQiCZZaVLbXKcK98t/UEAABJVWorUoYVz5TMuALfhnhjJIGETXZLUr18/zZ07V5WVlaqsrNSyZct02223qbq6Wtu3b5fX69XAgQOdDjNqrJ07Ffzjn+Xp11feq6486XVPt67y3jRV1povFJzzugMRRqZne+fK7tHOubLDkZIuDbpE8oT4CW9VKPUYE92Y7OLxOFcHstKk/JbOlI1j2uYe2zw41nq0l7zR3dYRNkvU70Ig2TnVF0hLkTozuAUAgOOc6gv4vFLXNs6UDUSCe2IkCxfM37Df2rVrZVmWevfurayskzd2fOklsxbKunXrTvj/bt26acSIEbELtJk8Xboodd5rpzzGd8N18t1wXYwisseIbtIbq6SGQGzL7dLGXU/ttOkmDb1SWvOG5D/FHpDtiqSBF7pjNtfXzuwlfbYz9uWO7mk6tXCW1yON6SW980Xsyz6zV+zLRPMk6ndhOAr6n6u7/3LqJ/NO9zoQb8b2kj7ZGvtyR3RT3C/HAwBAMhjbS1q4MfblntHFzC53E+4Hkhv3xEgWSXmbtmbNGklNL1t4zTXXNPr/3/nOd/TCCy9ENTacXla6NKybtGxLbMsd3zu25dmhTTdp/PelsvXS7s+kqnLJCpoZX+2LpIKhUl5Hp6MMX1FHqV2utK8ytuWeWRTb8tC0M4uk99Y2viZ7tLTMkvqzRykAxIVubaXOraTdFbEtd5wL+4MAACSizq2k7u2kbftiWy59AQCITyS6GsF6pPFvQj9pxTYpEIxNeW1ypKFdTn9cPEpJkwqGmB/LkmSFvqRhvPJ6pEkDpFlLY1fmGV1Ncg3xoWWWNLJHbBPe3+rPjD4AiBcejzR5oPTCgtiVOaCzGVQDAADxYfIA6dkPY1deUQfzsA0AIP4k5ZDd6RJdiH8dW0gXDIpdeTeMMXsyuJ3H4/4k19dG9ZD65semrJx06Sr3rFqaNC4bJrXIjE1ZPdvz5B4AxJshheYnFjJSpWtGxaYsAAAQmv6dpZHdY1NWWop03WgzrgIAiD8JMuQdnvnz58uyLE2ZMsXpUNAME/ubfbPCcbhGOnjE/Bmqs/pIvTqEVw6iz+ORrh9jBp7CEUkduHqUlJMRXjmIvqw0c6MRjkje/zSfSXZ7uaEBgLji8Zjv6Oww98mI5LvgiuFmNjEAAIgvVwwP/wHISPoClwyV2rLKCwDErQSYo4Jk5fNK/3K29Pg70oHq0M751VvhldGvk3TZGeHHhthomSV97xzpmQ+khkBo54RbBy4Y7N5lK5NB/87SpWdIr68K7fhw33+fV/ru2dzQAEC8ys2Q/vVc6TfvS/X+0M4J97tgYj8zkxwAAMSfrHTTF3jyPam2IbRzwu0LjC9y577tAJBMknJGFxJHyyzpjknRGYTu30n67llSis/+a8M+vTqYTm00lpa8YJB0/kD7rwt7Texvkl12S/WZZHq/TvZfGwBgn25tpX+bEP4s71BM7CddcgbLFAEAEM8KWkv/8a3wZ3mHYnxv6cqR9AUAIN6R6ILrtc6RfnCefXs0eD3SeQOlW89JjH25kkHvjqYO2LVBfFaadPM4M5uLzqw7TOxvklJ2LTHZsYV052RpQGd7rgcAiK4e7aUfnB/+stZNyUg1y9ZeOoy+AAAAbtCljekL9Ghnz/XSUqSrR5r9ulnGHgDiH8P4SAg5GWZ5sVU7pJeXS1V1kV2nUyszqFHY2t74EH2dWkn3XCC9u1Z69wspEIzsOoMLTWc2L8w1vuG8wYXmpuaVFdLKHZFdw+sxSbMLBjGbEwDcpmML6e7zpA/WS2+vCX1Z42/q30m6djR7cgEA4DbtcqU7JksLNkjzPgt9WeNv6t3R7AfdJsfe+AAA0UOiCwnljK5mBsbqndLCjdLO/ac/x+ORBnY209GLOvKkjpv5vCZBMa5IWrZFWrRJqghh/7b0FGlEd3NeJ5tmhcEZORnSt8dL5w2SFm+SPtka2jrtLbOkM3tJY3qR5AQAN/N5pUkDpLG9zHfAoo1SedXpz0vzScO/6gsU8MATAACu5fVI5/SVRvaQlm814wJ7D5/+vFSfGVMa39u+GeIAgNgh0YWEk5ZiNgwf1UMqr5R2HTA/ew+bp3k8HrMcTaeWZuZWlzb2LXeG+JCbYQa5JvaTSg99VQf2m6SXP2g6vjnpZiCrsLVU0MYku5A4OraQrhwhXTxUKv6qDSg+YGZ9+oNSite0EYVtTB3Ib2kGRwEAiSE7XZrQzwx0lR089j2wv+pYXyD7q77A1/2BaOzxBQAAnJGVZvoBZ/eRyg4d6wuUVx7rC2SmfTUm8NXYEH0BAHAvhnaR0Nrmmp8zujodCZzg9Zp9uzq3ksb0dDoaOCEtxezb0qO9+f+NZdKhGjO4ee1oZ2MDAESf12Nma3dqJY2mLwAAQNLxeMyDjfktzcOOAIDExPPrAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHClFKcDQOOyvD5VTJzsdBghy/L6nA4BAJBA3PY9KNn/XZjmk2ZcZ+sloyqNrgAAAABgG7fdD0jcE9iN+2IgdCS64pTH41G2j7cHAJCc+B6UPB4pPbn/CQAAAICkxf0AuC8GQsfShQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwpRSnAwBwMsuSgg1ORxEeb6rk8TgdBYBEYVmWjgQDTocRliyvTx4bG0LLkupd9E+Q5uN7AAAAAADs4rZ7Qon7QrsxNhI6El1AHAo2SB887nQU4Zlwl+RLczoKAIniSDCgVvPfdTqMsFRMnKxsn31dq/qAdN9s2y4XdTOuk9LpWQIAAACALdx2TyhxX2g3xkZCx9KFAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHClFKcDAABEhz8gfVkq7SiXdh2Qyg5Jh2rMa4drpN/OlwpbS13aSP06Sak+Z+MFALvV+6V1JdLO/VLxAWnP8e1grfTsB1JhG6lrG6lPvuTjETAg4ZQelDaWmTZg1wHTB5LMn4/80/SFClpLffOltrmOhgogChoC0voSc09U/M17olrp6a/uibq2Ne1ACvdEQMLZc1jaWGr6Ad/sCzw8z/QDClub+4H2ec7GCiByJLoAIMFUVEuLN0lLtkhVtY0fY0naUGp+JCk7XRrdQxrXW2qTE7NQASAq9h6WFm2SPtkq1dQ3foxlmSTYuhLz/y0ypbG9pLFF5r8BuFcgKH22U1q4Udq6r/FjLEm7K8yPtkgemQGu8b2l/p0lryeGAQOwXXmluSdaukU6coq+wJel5keScjKksT2lM4ukVtmxixWA/QJB6Yti0xfYtKfxYyxJJQfNzydbze96d5TGFUmDCiQvD8EBrkKiC0ggn235UD96esIJv8tIy1ZBu96aNOxmXT7uTvl8fOwTVTAofbRB+udn5snFcFTXSfPXm/MvGCRN7M/MBgDu4w9Ib6+R3l8nBa3wzj1UI721xrSFl55hBrkY6Abcp/iA9OJSqaQivPMsHRvw7tleumEMM7wANwoEpffXSm9/Yf47HFW10rtrpQ+/lKYMkc7uw0A34EZlh6QXl5hVHcK1scz8dG0j3ThW6tDC/vgARAcj3kACmjD0Bo3qe5EsWaqoLNO7n/5JT79xj3buXa8fXv2s0+EhCvZXSX9eJG0vb951AkFp3mfS57ukb4+T2jFtH4BLlB6U/rRQKj3UvOvU+6WXlpvZIDedKbXIsiU8AFEWtKR3vzDJ7nAT3d+0Za9ZyuiyYWa2OwB32HtY+tMik/BujoaANGel9Nku6eYzpdaseAG4gmVJH6w3YxrhJrq/acd+s8TxxUOlc/pKHh6AA+Iez6YACaio8zBNGn6TJg+/WdeeO02P37lU7VoU6M1Pfq+DVU2s3wLX2nNIevyd5ie5jrfrgPTYu18t5wMAcW57ufT4u81Pch1v0x5zzf1V9l0TQHQEg9LsZdKbnzc/yfW1+oD0j+XSvNVm4AxAfCs+YO6JmpvkOt62faYvsOewfdcEEB2WJb2yQnp9VfOTXF/zB03Se85K+gKAG5DoApJAZlq2+nYdI8uyVLJ/i9PhwEb7q6TfvH9sQ2U7VdVKv32fGzsA8W13hdlIvqm9uJrjaBt7xP5rA7CHZZlZmMui1MV996sl0ADEr7JD0m/nS1V19l/74BHpN+/x4AsQ715bKS3YGJ1rf/Sl9Mbq6FwbgH1IdAFJovSrBFdeVmuHI4FdAkHphQXRSXJ9rapOeuFjs+8NAMSbOr/0/MdSbUP0ythfJf15sX2zRADY65Ot0uLN0S3jrc+l9SXRLQNAZBoC5p6oOgpJrq8dqjHLIwdtmiUCwF6rdpi99aJp/jqzxQOA+MUeXUACqm04okPV5bIss0fXG0ue1ubdq9S3cJQK2rHRQKL4YL1ZYjAc91wg5WVKh2ukX70V2jmlh6R3vpAuGhJ+jAAQTfNWh/+EdSTt4OY90uJN0ni+QoG4cvCI9Oqn4Z0TSRsgmaUR75siZaaFVx6A6Hp7jZnRFY5I2oEd+83917cGhB8jgOiprDUzu8MRaV/g759IPdtL2enhlQcgNpJiRld5ebmmT5+uXr16KSMjQ4WFhbr77rtVXV2tW2+9VR6PR08++aTTYSLKKqqlHeUmMVBV63Q00fWnd+7X1Q+00zUPttdtvxqsN5b8RuMHXqkHb3nN6dAcE7TMXlbby6WSCqne73REzVNeafahCFdeptQyy/wZjvfWSqUHwy8PiAeB519Qw3kXKfjWOye9ZlmW/D+6Tw1TLpW1bXvsg4uB4nUf6rGbPPp03swmj3nsJo9em3lxDKNqvh3l0scbwj8v0nbw9VUsYQjEm5eXhz+jM9I24OARs7k9gPhRUiG9vy788yJtB9783NyHAYgfr30a/ozOSNuAqlqzRKIbJeo9IUKXDOMiCT+ja/Xq1brwwgtVVlam7Oxs9e/fXyUlJXr88ce1ZcsWHThgpkMMHTrU2UARFf6A9NlOadEmaeu+Y7/3eqTBhdK43lKv9pLH41yM0TBl9G06e/A18gcbtK10jWZ/OEPlh4qVlppx9Jj/+8v1ClpB/fTmvx/93eEjB/SvMwfototn6lvDpjoRuu2q68ySNos2SuXHPfWfkSqN6mHqQIc85+KL1IKN9m2wGoqgZQaUrxsduzIBu3hvnqrg0mUKPPM7eYYPk6dd26OvBV+ZI+vzNfL+yy3ydO/mXJAIW7SXJ/mmer9ZHu3CwbEtF0Dj9lVKa4pjW+ayLdJFg6UsnuQG4sLHG8w+fbHiD5qxhcuGxa5MAE07eERauSO2ZX66Xbp4aPhJMsBpyTAuktAzusrLy3XJJZeorKxM9957r0pLS7Vy5UqVlZVpxowZmjdvnpYvXy6Px6PBgxm1SDTVdWYD+T8vPjHJJZlB+9U7pafeM0+CJtpa253bFmlY70ka1fdCXTdhuv73u29oQ/FyPfbyvx095s4rf6O12xdp/qpZR3/3xKu3a0D38QmT5CqpkB6eZ564Kf/G0la1DebGaMbc6G1eHi31fpO8i7VPt0lH6mNfLtBcntRUpUy7V6qtVeBXvz76e2tXsYIv/Emevn3kveYq5wJE2A7XOLNG/pLNsX3IAEDTFm+KfZkNAWf6YABOdqTODDjH2rIt7l8dBEgUSzbHfh/dQFBaGuW9QYFoSIZxkYROdN11110qLi7WHXfcoZkzZyo3N/foa9OnT9eQIUPk9/vVrVs35eW5cEoHmlTvl5794OQEV2MWbjJr+8fySbBYG9DtTE0adrM+/Gy21m5fLEnKy2qte695Tk/OuUPlh0r08ecv6fMtH+oHVz7tcLT22FcpPfW+2Tj4VIKWNGuptHJ7TMKyxZpdUo0DCaf6r2ZIAm7kKeol7/XXyvp0pYLz3pQVCCjw8EzJsuSbdq88Pp/TISIMn253JuF0uEb6siT25QI4UdByLuG0jEQXEBdW7TTJ51g7Ui99EePZpAAa59RDy/QF4FaJPi6SsImu9evXa/bs2Wrbtq0eeuihRo8ZPny4JGnIkCFHf/fSSy/pqquuUteuXZWVlaW+ffvqv/7rv1RVFeZO53DUR1+azWJDtWCjtC2EpJibTZ30U3m9Pv3x7f85+ruRfS/QOYOv1YxZN+mJV/5D91zze+Vlt3EwSvu8siK8dZpnLwt/jwenbA+jbtttR7lzZQPN5Z16g9SjhwK/+72CTz0ta8NGeW/5tjyFBU6HFhP++iOqqSxv9MdttjsYcjj9CwDRsb8y/P047FJ2UKpzSZ8RSGRO3pfQFwCcd+iIWbrQCfurzH5dbpRI94SITCKPiyTsHl2zZs1SMBjU1KlTlZOT0+gxmZlmQdXjE10zZ85Uly5d9POf/1wFBQVavXq1HnzwQX300Uf6+OOP5fUmbG4wYQSDZg+NcC3aJPVob3888aJz216aMOR6vb/qr1qzdYEG9ThLknTbJTN16yP9NLLvhRrdb4rDUdqjvDL8J+7r/GaGwLiiqIRkq2IHb6x2HXCubKC5PCkpSpl2j/x3/kDBufPkGThA3isvdzqsmFn68v1a+vL9Todhi2IH2yLaQcB5Tn4OLUm7KxL7vgFwAyfbgV0kugDHOd0n33VA6tfJ2RgikUj3hIhMIo+LJGyia/78+ZKkCRMmNHlMcbGZb358ouuNN95Qu3btjv7/Oeeco3bt2mnq1KlauHChzj777ChFDLts2iNVVId/3uqd0tUjpcw0+2OKFzd867/0wepZ+uM7/6OZ//aBJCkzLVv5rXuoe8dBDkdnn0+2mkGIcC3d7I5EV8lB58ouPWiWC/J6nIsBaJbsbCk1VfL75Rk5Qp4keoBl4ITbVDT6mkZfe/UXk2McTeTqGsxTlE4pqXCubABG6UFnyy85SKILcFIwKO055Fz5Tt6PATAc7wtUuDPRlSj3hGimBB0XSdhE144dOyRJXbt2bfR1v9+vRYsWSTox0XV8kutrI0aMkCTt3r07olhGjBihsrKyiM5F+LqPnqrhV84I+7xAUBo25lxV7nV+V8m0lEw9e0f4O2wP6Xmu3n2k6RRP1w799PbD0VnIvKh3ker9p9kQK0ZGXf+EupxxRdjnbd51QAUFg6MQkb2untH0ovD3XCDlZTZ9bl7GsT8fOMU/0eEa6Vdvnfz7oCV179FLgQZ3ztO/6CfLldUiX6VlpSooGOl0OI5wy7+BlZYmPfOUvde0LAV++ajkb5C6FCr44t/kPedseTrl23L93kW95am3bwM9X2qmrvhZ+N8FTWnZsUhdBk6y7Xrf1LuoSIGG6H8PpOe00yU/XdXk69FuB8srDqugoH+I0QKIhqGX/q96jftuo6/Z1QZITbcD9z/4c2346DchRot445a+EJqWkpaty/93Q5OvR7svUFMXUEFB42NNAGJj4AU/Vt8JdzT6Wiz6AjNm/lrfeXdmiNFGzm33hFLs7gubw019AbvHRqI9LiKFPzYSDB7bgHv8+PFatarp+/1TSdhEV3W1mdJTU9P4B2v27NkqLy9Xbm6uunfvfsprffCBmfnSr1+/iGIpKyuLOEmG8LU5HPlj3vv27df+OHivMlKznA4hbKUlJaptcGiB5G+oqY100wav6z+reZlSyxCqj9cb2nGNKS0tU0NdBNMm40AgEDj6p9vf60i55t8gI12pNl8yOOd1WZ99Lu93vyPv2DHy336nAr98VL6ZM+TxNH+aYklpiRRx+3OylHR3fReUlJbIXxf974Gslqd+YCPa7aBleeL7swMkgaLqpvshsegLHa6spB1wMdf0hdCktMzcU74e/XaAvgDgtG5VTY/9xaIvUFVVFZN2wG33hFLs7gubw1V9AZvHRqI9LiI1b2xkz549EZebsImujh07qqKiQitXrtTYsWNPeK20tFTTpk2TJA0ePPiUb+Lu3bv105/+VBdccIGGDh0acSyInXRv5IOMeVkeZXTubGM0kUlLOcWjJ3Eqv1OnuJnR5fVXRnReXdVedY6D9/90/PU1SklrvI4cPs1bkJdhOnPBoHT4FJOymrqOFQyqfbvWktUytGDjjM/nO/qnG97raHDLv4GVlqZ9dl5v924Fn39Bnj695b32anl8PnlvmqrgH/6o4JzX5bvismaX0Sm/k+0zutykU36nmDy5l5Jx6sGtaLeDQX9NXH92gGSQkeZr8jW72oBTXSs7I5V2wMXc0hdC0zzeUw9lRbsvEGigLwA4LTO96XYgFn2BrIyUmLQDbrsnlGJ3X9gcbuoL2Dk2EotxESn8sZFgMKjS0lJJUocOHSIuN2ETXZMmTdL69es1Y8YMTZ48Wb1795YkLV++XDfffLPKy8sl6ZTJq6qqKl122WVKS0vT888/H3EsK1asiPhchK/eLz3wqnQkzLHGvvnSrzd8Hp2gwhSolz54PHbl/fLfP2z2NTZt3CRfnOxvtmu/9MtGppafzg3n9dbz9zS9LGC8mPlPqbiJPWIam1J/vAeuME8sHa41n5NwdWjpVfGuneGfGCfuf0U6VCPld8w/uk9jsnHLv0F1wK9W89+15VpWMKjAI7+SgkH5pt0jz1edWu+1V8tatFjB51+Qd/SoZk/V37hpo7J99nWt6vzSfbNtu1zUbdy0Sae437TV/7zc9E1ptNvBgb3a6+k4/uwAyWDZFmnW0sZfi3YbIEnPPPb/1Cf//0V2Mhznlr4QTu1nr0vlTTzfGO12oHt+NnUHcNiqHdIfFzb+Wiz6Ar/6+Y81uPDHkZ0cBrfdE0qxvS+MlJv6AnaNjcRqXEQKf2ykurpaOTk5kqSFC5v4YIcgMXYaa8T06dPVpk0b7dq1SwMGDNCgQYNUVFSkUaNGqUePHpo4caKkE/fnOl5NTY0uueQSbdu2Te+8847y8+1bpxLRlZYije4Z/nnje9sfC5xR2Ebq0ia8c3xeaUwE9cYJBa2dK7vQwbKBSAVfekXWuvXyfucmebp0Ofp7j88n34/ukYIBBX75qCyr6T0OEV9oB4Hk5vTn0Mk2CIDhZDvgdBsEwPnPodPlA+FKhnGRhE10FRQUaMGCBZoyZYoyMjK0fft2tW7dWs8884zmzZunjRs3Smo80dXQ0KCrr75aK1as0Jtvvqn+/dlw3G0m9pNaZYd+fN98qX+n6MWD2Lt8mEleher8gVKuS2aEh5vEsxOdObiNtXOngn/8szz9+sp71ZUnve7p1lXem6bKWvOFgnNedyBCRIJ2EEhuHVpIp1i9MKra5EjZ6c6UDeAYJ/sCTpYNwGiTI2U5tKpQTkbke3sBTkiWcZE4n0jYPP369dPcuXNP+n1VVZW2b98ur9ergQMHnvBaMBjU1KlT9f777+uf//ynRo0aFatwYaPcTOnfJ0pPz5cONL1XtSSpd0fplrPM+rxIHD3aS989y0xlbwic+tiJ/aTJA099TDwZXCi9skLyB2NbrtcjDe0a2zKB5vJ06aLUea+d8hjfDdfJd8N1MYoo9gr6n6u7/3Lqp7JO93q8GdZNemtN7MtNT5EGxPcS7kBS8HlNn+STrbEve3i32JcJ4GRDu0ivr5Ji/eB5qk8aVBjbMgGczOMx38kLNsa+7OHdTPlukoj3hAhdsoyLJOXQ/tq1a2VZloqKipSVdWIK/vbbb9c//vEP/fCHP1RWVpaWLl169GffPru2fkMstM+TfniBNGmAlNPIU5cd8qQrR0i3nStlpMY8PMTAwALpngukUT2klEZau6IO0q1nS5cOc1cnJSdDOsOBhNOgAp5aAhAf2udJfTrGvtxRPaR0+gxAXHBi2XGPRxrbK/blAjhZq2xpoAMPn5zRlVmdQLwY59AWJOOKnCkXwKklZaJrzRrzCHBjyxa++eabkqRf/OIXGjt27Ak/8+bNi2mcaL7cDOnioWajyX89V8r8anAqO0368cXS2X2kFIeWPUFs5LeUbhwrPXildMv4Y3UgJ126fZJ7n8Y7q09ylAkATTk7xm2Sx+PczTSAk3VpI3VtG9syBxeEtzw6gOiKdV9Aks6iLwDEjY4tzCpNsdQ33zx0ByD+kOj6hu3bt8uyrEZ/brnllhhHCruk+MxSQ2kpx/7fTTN47FK8b5PufvJM3TKjt25/bKS2l611OqSYyU43S9x8XQfC2b8rHnVpE9uniEZ2l3p1iF15AHA6/TubmaaxMrGfuZkGED+uGWmWVo6F9BTp8uGxKQtAaIo6xnY50fG9pUL25wLiylUjG1/BJxpSfaY8APHJ5UO9kTlVogtIZI+9/H1dNPo2vXDfRl034T49MvsWp0NCM1xyRvhPFR+ukQ4eMX+GKi9TuoKBHQBxxuORrhkV/ibUkbSDHfKkCwaHVw6A6CtoLZ0X5j6rkbQBkklyMZsLiD9XjjAruYQjknagTY50ydDwygEQfR3ypIvCHN6NtC9w8VCpXW545wCInRSnA3DC/PnznQ4BiLmKqr3aWLxCv/jXdyRJZw26Sk++eod2l29W57ZsNuBGGanSd8ZLT70nNQRCO+dXb4VXhs8r3XymlMU69ADiUF6mNPVM6bmPpGCIeyeH2w5mpEo3jzNPcAKIP5MHSlv3SRvLQjs+3DZAMjNGxvQM/zwA0Zedbr6nn/lACgRDOyfcdiDNZ8pgn04gPp3bV9qyV1q7O7TjI+kLDCpgOwcg3iXljC4gGe07uEut8/Ll85n8tsfjUftWXbT34E6HI0NzdGsrfe+c6AzA+rzSd88yS4IAQLwa0Fm66czoLF+WniLddq6ZNQIgPvm80q1nSz3aRef6gwvNfq/JuOw54Ba9O5r9mKOxPH2aT/reuea+C0B88nrNQ8B9ojR20Tdf+vb42C2XDCAyJLoAwOX65Ev/PlFqkWnfNXMypO9PkAbGcP8bAIjUsG5moDvcZQxPpVW2dMckqUd7+64JIDrSU6V/mygN7WLvdccXmYEzt+/tCiSDQYXm4ZQcG1eiaJEp/fu3TCINQHxLS5H+9Vyzv7idRvWI3sPFAOxFlx1IEu1aFurA4VIFAn5JkmVZ2luxU+1b2jwiAEf0aC/dN0Ua2aP51zqjq/TjKdzQAXCXAQXSfRfbk6AfV2TaVDacB9wjLcUkpb49zixl1hwts0zi7OpRJLkAN+mTL/34YnuS3qN6mH5F9yjNFgVgvxSfWdb8X84Of+++b8rLMAmuG8ea6wKIf0m5RxeQjFrltFevzsP03sq/6PyRt2jBmpfVtmUB+3MlkKx0aepY8wTTxxvM+tRWiHvWeCT17SSd3Ufq1ymqYQJA1LTINDO71u427WCoe/ZIZimSQYXSOX2YxQW4lcdjZngWdZQ+/lJaskWqqg39/FZZ0plFZg+ODPbiAVwpJ0O65SxpfYn00ZfSl6Whn+vxmCWRz+krFXWIXowAomtwodSzvbRgg7R4s3S4JvRzW2RKY4uks3o3/8EZALFFogtIIj+46hk9MvsWzZr/c2Vl5GnatX9wOiREQe+O5udAlbRiu7Rzv7Rrv3ToG527vEypsLWZsTCim9Q214loAcBeHo+Z1TWwQNpzSFq546t28MDJA96tskwb2KWNNKK7mcUBwP1yM6QpQ6XzB0mf7zJJ7+IDUukhKRA8dlyqT+rU0uzD16+T1L+T2ecDgPv162R+9lVKn24390O7Dpw84N0yy7QBXdtIw7tJrXOciBaA3bLTpQsGS5MHSmuKpQ2lpi9QcvDEvoDPa/oCha3NrNCBBczmBtyKRBeQRArb99Hjdy5xOgzESOsc6byBx/7/SL1Ub1auVJrPzAADgETWoYV04WDz35Zl2sGGgPn/jFRmbACJLsVnZngN62b+3x8w7UAgKKV4TV+IwSwgsbXLlS4YdOz/j9RJ9V/1BdJS7N3fE0D88XnNcqZfL2nqD0g19ZL/q75AZhpLEwKJgkQXACSJrDRu5AAkL4+H5UeAZJfiMzPaASSvrHSJCdxA8krxSbn0BYCExPNrAAAAAAAAAAAAcCUSXQAAAAAAAAAAAHAlEl0AAAAAAAAAAABwJRJdAAAAAAAAAAAAcKUUpwMAcDJvqjThLvuvu+g5qb5aSsuWxt1q77W9qfZeD0Byy/L6VDFxstNhhCXL67P1emk+acZ1tl4yqtLs/esDAAAAQFJz2z2hxH2h3RgbCR2JLiAOeTySLy06143m9QHALh6PR9m+5O6meDxSenL/EwAAAABA0uKeEIyNhI6lCwEAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EopTgeAxlmWpSPBgNNhhCzL65PH43E6DABAgrAsqd49X4OSpDSfxFchAAAAAACwA2MjoSPRFaeOBANqNf9dp8MIWcXEycr2UZ0AAPaoD0j3zXY6ivDMuE5K56sQAAAAAADYgLGR0LF0IQAAAAAAAAAAAFyJRBcAAAAAAAAAAABciUQXAAAAAAAAAAAAXIlEFwAAAAAAAAAAAFyJLdOR0IJBaW+ltGu/tPewVFNvfl/bIH2+SypsLbXMkjweZ+NE9DQEpJIKadcBqaL6WB2oa5A2lEoFraXsdGdjBKIpEJTKDpnPwL5vtINri6WCNlKLTGdjBAAAiKZDR0xfqKRCqmkwv6ttkJZuMfeEHVtIPh4DBgAgYVXWmL5A8Tf6Aks2H+sLpPicjRHNQ6ILCWnXAWnhRmn1DqnOf/LrdX7p+Y/Nf7fIlEb3lMb2klplxzZOREcwKK0vkRZuMsmsoHXyMbV+6bfzzX/nt5TGFUkjuksZqTENFYgKy5K27jPt4BfFJuH7TXV+6Xcfmf9ukyON6SmN6SXlZsQ2VgAAgGiorDGJrKVbpP1VJ79e55f+ttT8d6pPGlQgje8tdW/Hg5AAACSCqlrpk60mmbWv8uTX6/zS7GXmv1O80oCv+gK92tMXcCMSXUgoxQekl5dL28pDP+dQjfTOF9K7a6VhXaXLhzPQ62af7ZReWykdqA79nNKD0kvLpTdWSef2kyYP4CkOuNeWvaYdLDkY+jn7q6R5n0lvrTGJ/0vPIOkLAADcqabe9OuXbTUz20PREJBW7jA/nVpJV4+QerSPbpwAACA66hqkuZ9JSzZJ/hD7Av6gGVP8bKeZ3XXVCKmoY3TjhL1IdCEh+APSe2tNwqqx2TuhsCzp0+3Sl6XS1SOlM7raGiKirKpWenmFtGpH5Neo80tvrzHLWt441kxdBtyi3i/NXS0t2CBF2AwqEJQWb5LW7ZauHyP1zbczQgAAgOhaX2KezD54JPJrlFRIT7wrnd1XmjJESmPUBAAA19hUJs1aGt4D8N9Udkh66n1pfJF0yRlSOg8CuwKrUMP1ahukZz4wMxEiTXIdr7pO+uNCMyvIsuF6iL69h6Vfvtm8JNfxSg9Kv37bvusB0VZZKz3+jvRxM5Jcxzt4RHp6vjR/nQ0XAwAAiIH31pr7wuYkub5mSfroS5Pwqqpt/vUAAED0fbzBJKiak+Q63sJNZnzwUI0910N0keiCq9X5zc3Mpj32X/uD9dKrn5Lsinf7Ks0NaIUNN7THCwSlPy2SVm6397qA3arrpKfeMxuq2u31VdK7X9h/XQAAADu9+4WZ2W63XQdMP6u6zv5rAwAA+3z4pfTKCvuvW3pIevJds/cn4huJLriWZUl/XSxt2xe9Mj7eYJ7kQ3yqbTCzTiqj9JSlZUl/iXIdA5ojGJR+/5GZVh8t8z4j4QsAAOLXim2mvxItpYek5z4y/S4AABB/Pt8lzfk0etffVyk9+2Hoe3/CGaw2Ddf6dLtpyMJxzwVSXqZ0uEb61VuhnTN3tdSvk9ShRbgRItpeWyntrwrvnHDrQNCSXlwiTbuI9fkRfz78MvxEbCTt4EvLpV4dzHkAAADx4tARs09vOCLpC23dJ320QZrQL/wYAQBA9FTVSn//JLxzIukL7Dpglkk+f1D4MSI2kmJGV3l5uaZPn65evXopIyNDhYWFuvvuu1VdXa1bb71VHo9HTz75pNNhIgyHaiKbjpqXKbXMCm+w1h+UXlzKE3zxZkOptGRz+OdFUgf2VUpvfh5+WUA07Tkk/TOCp5cj+QwcqQ+/4wgAABBNlmX6JzX14Z0XSV9IMv2uPYfDOwcAAETXyyvC308z0r7AO19IJVHYNgL2SPhE1+rVqzVo0CA98sgjKisrU//+/dXQ0KDHH39c1113ndavXy9JGjp0qLOBRkng+RfUcN5FCr71zkmvWZYl/4/uU8OUS2Vt2x774Jrhw/Vm4DVWdpRL60piV56dLEs6WCJ98U+p/qt9rOqPSDtWSA0u3lg5kgH+5vh4A+vxulnpQemlT451fqpqTfLSjs3KnfLOFyYRHytfFEs798euPLsUr/tQj93k0afzZjZ5zGM3efTazItjGBUAAGiuHfultbtjV15DQHqPvUsBAIgbpQelVTtiV14gKL29Jnbl2SkZxkYSOtFVXl6uSy65RGVlZbr33ntVWlqqlStXqqysTDNmzNC8efO0fPlyeTweDR482Olwo8J781SpW1cFnvmdrH3lJ7wWfGWOrM/XyHvzTfJ07+ZMgBGo90vLtsS+3IUbY19mc1UfkD75i7TiRalsnWR9NShuBaVNH0oLnpa2LDLJMDfZtd/c2MZSICgtdaDeoXkqa6XfzpdmzJMWbpICX9X1gGU6J/9vjvS3pZI/4GiYYauqlVbvjH25bmwHAQBAYlrkQL9k1Q6pui725QIAgJM50RdYU+zuh6YTWUInuu666y4VFxfrjjvu0MyZM5Wbm3v0tenTp2vIkCHy+/3q1q2b8vLyHIw0ejypqUqZdq9UW6vAr3599PfWrmIFX/iTPH37yHvNVc4FGIHPdsZ2NtfXNpRK5ZWxLzdSVeXS8helyj1NHxP0S9uWSOvfcVeya9EmZ8pdvMns2QV3qKyRHnvbfHabErRMAvN3H7or2bVsizOboK7aIR1hcAcAADisui62T3B/zR905qFLAABworoGafm22JcbtCLbSgXRl7CJrvXr12v27Nlq27atHnrooUaPGT58uCRpyJAhR3+3YMECTZo0Sfn5+UpPT1dBQcEJSxy6kaeol7zXXyvr05UKzntTViCgwMMzJcuSb9q98vh8TocYlg1lzpRrSdp0iqRRPAkGpNWvSP4QlyYsWSMVr45qSLZyqg5UHDH7dcEdXlgolVeFduyGMumN1VENx1ZOfQYaAtK2fc6UDQAA8LVt+2K7hPPxNjrUDwMAAMfs2C/V+Z0pm75AfEpxOoBomTVrloLBoKZOnaqcnJxGj8nMNDvOHZ/oqqio0KBBg/T9739f7du3V3FxsR566CGNHTtWX3zxhQoKCmISv928U29QcMkyBX73e3m3bJW1YaO8t31PnkL3/X2KDzhX9q4D0ljnig/Z3k1SbZgbJe/8VCoYKnk8UQnJNtV1UkW1c+UX75c6JOYE0ISyc7+0ZW945yzZLF0wSMpMi05MdrEs59vBAe776pC//ohqKstPfyAAAIh7uxzuC1lW/N83AQCQyHY5uIf47gNSMCh5XTiFKJHHRhI20TV//nxJ0oQJE5o8pri4WNKJia5LL71Ul1566QnHjRw5Un369NHLL7+su+++OwrRRp8nJUUp0+6R/84fKDh3njwDB8h75eVOhxW2Or+055Bz5TvZiIajeFX459QclPZvl9p2tzsaezk5wC9JOw9Iw+P83wiR7SVV7zfT3s/uY388djpQ7czyrV9zcmCpOZa+fL+Wvny/02EAAAAbOHlf9vWDd60bf54WAADEgJNjE/UBaW+l1LGFczFEKpHHRhI20bVjh1mwu2vXro2+7vf7tWjRIkknJroa06ZNG0lSSkpk/1wjRoxQWVl4cxqttDTpmaciKq9J2dlSaqrk98szcoQ8Nqadexf1lqc++iOvWa0KdNGPlzb5+j0XSHmZTZ+fl3HszweuaPq4wzXSr946+fcbtu5WQcHoEKN1hkcePXf3Dnk94b+//3vf43p58cNRiMo+Xc64SqOuf6zR1073/kvNrwN/nvWq7rzszhCjhVMumLZQOW27hX3eY8+9rhtf/A/7A7JR6y7DNPH21xt9LRafgQVLVunBmy4JMdrI+VIzdcXP7NuQb+CE21Q0+ppGX3v1F5NtKaN3UZECDTW2XAsAADRt4p3z1Lqg8ft4u+4Jpab7Q+dMulgVblr7HQCABHPO919Sux5jGn0tFn2BCy+5Vvu2Lg4x2sglw9hIMHhsPerx48dr1aoIZnAogRNd1dVmbbOamsb/UWfPnq3y8nLl5uaqe/eTp2cEAgEFg0Ht2LFD//mf/6mOHTvq2muvjSiWsrIy7d69O7yTMtKVGlFpjbMsS4FfPir5G6QuhQq++Dd5zzlbnk75tly/pLREqq2z5Vqn0jKQdcrX8zKllqc+RJKZWhrKcSfxpIT/XsZYRlp2REkuSfLXWXH/92vZq+lNl0J9/6XI60BdQyDu/40geVIyIjrPb/ni//3N7dnkS7H4DAQsT0z+jVLSI2mkm9ayY5G6DJxk6zW/qaS0RP66I1EtAwAASMFg0+sGRv2eUNKBg4dUEu99RgAAEpg/YDX5Wiz6AhWHDjM20oTmjI3s2bMn4nITNtHVsWNHVVRUaOXKlRo79sRdlUpLSzVt2jRJ0uDBg+VpZHHtc8455+iMr169emn+/Plq165dxLGEy0pL076ISmtccM7rsj77XN7vfkfesWPkv/1OBX75qHwzZzT69w9Xp/xOMZrR1fqUrx8+TbI4L8M0YsGgdLg2gutYfnXu3PnUhTjMI4+CwYC8Xl/Y5/rSFPd/v7zcptcIOd37LzW/DqSn+uL+3whSsCGyL9QUT/x/xlu3anpufCw+Az6PFZN/I1/qaaamxaFO+Z2Y0QUAQAx4vU0Pbtl1T3iqa7Vu2UKeOO8zAgCQyFJO8Yx/LPoCrVrkyc/YSKPCHRuxLEuWZfp2+fmRT8pJ2ETXpEmTtH79es2YMUOTJ09W7969JUnLly/XzTffrPJys+na0KFDGz3/ueee08GDB7Vt2zY98sgjOu+887Ro0SJ16dIl7FhWrFgR9jnVAb9azX837PMaY+3ereDzL8jTp7e8114tj88n701TFfzDHxWc87p8V1zW7DI2btqobF/0q1O9X/rx36VgE/c1jU0lPd4DV5hM/eFa6YFXwy+/X6/Oevarvd3i2cq/Swd2hn/eA7+8W493ie996DaWSb95v/HXTvf+S82vA7fceIVemXmaec1w3N+XSYs3h3/ej267TGMfbn6bGE0V1dKDcxp/LRafgXPOPEN/+s/ot4N1fum+2VEvxlYbN21SesL2rAAAiB+//0j6oonuSLTvCSVpwfy5ET8BDgAAmu9PC6WVOxp/LRZ9gbfm/l0d8iI7NxyMjYTOvk2a4sz06dPVpk0b7dq1SwMGDNCgQYNUVFSkUaNGqUePHpo4caKkpvfn6tOnj0aPHq3rr79e77//viorK/Xww/G9d1FjrGBQgUd+JQWD8k27Rx6fmeXjvfZqeXoXKfj8C7JKSh2OMnRpKVIHBzf6Kzz1hLK4UTA0/HOyWkutCm0PxXYFrRwu3yV1INmN6x3+ORmp0rButodiu5ZZUna6c+W7pR0EAACJy8k+eW6G1MJ9D1cDAJBQCts4V3Z6itQu17ny0biETXQVFBRowYIFmjJlijIyMrR9+3a1bt1azzzzjObNm6eNGzdKajrRdbyWLVuqV69e2rw5gukBDgu+9Iqsdevl/c5N8hw3G83j88n3o3ukYECBXz56dHqgGzg5yOqWAd62vUziKhzdRkk2rGIZdVnpUpumVy+MOie/SBG6zq2kvmHOdj6rt1wxG8fjcbYtItkLAACc5vQ9oRvumwAASGROjk0UtJa89AXiTsImuiSpX79+mjt3riorK1VZWally5bptttuU3V1tbZv3y6v16uBAwee9jp79+7Vhg0b1LNnzxhEbR9r504F//hnefr1lfeqK0963dOtq7w3TZW15gsF57zuQISRCXfw2i4ej9Q7/O3WHOH1SkOvlNJDTAh1GSF1Ov1HIW70c6gOtM0xP3CHb4+T8luGduzgQunCwVENx1Z9OzlTblqK1KO9M2UDAAB8rUc7KS38LYlt0cehexEAAHBM1zZSZpozZTs1No1Tc8Gz6/Zbu3atLMtS7969lZV14sLaN910k3r16qWhQ4eqZcuW2rRpkx599FGlpKTohz/8oUMRR8bTpYtS5712ymN8N1wn3w3XxSgiewwulHIypKrTbBZotwGdpVbZsS2zObJaSiNvlNa91fR+XakZUrcxUpfhMQ2t2cb1lhZucqZcnt50j6x06c7JZr+uz3ZJjU1cTfVJ43tLFw81CWK3GNVdmrdaagjEttwR3c0Sj25S0P9c3f2XU89aPt3rAAAgvmSmScO7S0tivOhKmk8a2SO2ZQIAgJOlpUijekgffRnbcn1eaUyv2JZph2QYG0nKRNeaNWskNb5s4ZgxY/SnP/1Jjz32mGpra1VYWKgJEyboJz/5ibp27RrrUNGIFJ80tqf07trYljs+gj1/nJaRJw27Vqoql3Z/bv4M+qXUTKl9kdShj+Rz2aC1ZGbp9GwvbdkbuzJTfeYLFO6SlSbdcpZUUS0t3iTt2C/V+02ypl8nM1CR5dATQM2RlW72E1u2Jbblji+KbXkAAABNGVcU+0TX8O7u7DsCAJCIxhXFPtE1tIvZrxPxh0TXN9xxxx264447Yh0SwnROX2nJltjN6irq4J5lCxuT01bqM9HpKOw1ZYj0xLtSrJ41mNhfyk6PUWGwXatsacpQp6Ow13kDpVU7TOIuFoZ1lTq1ik1ZAAAAp1PQWjqjq+kPxUJ6ijRpQGzKAgAAp9c+TxrTU1oao4eAU33SeYNiUxbC56KFmuxzqkQX3CEnQ7p2VGzKSkuRrh/DJoPxpkd76ey+sSmrUytpMje1iDNtcqRLz4hNWbkZ0lUjY1MWAABAqK4aIeXE6GG0S4eZ/hcAAIgflw2TWmad/jg7XDRE6pAXm7IQvqRMdM2fP1+WZWnKlClOh4JmGFwojewe3jmHa6SDR8yfobpiODc08WrKEKlji/DOCbcOpPqkG8eYJTOBeHNmUfgboof7GfBIum40MxoBAED8ycmQrh0d3jmR3BP2zZfOdOF+HAAAJLrMNOmGMZInjAkKkfQFeraXzukTfnyIHY9lWe7eZSxBVQf8ajX/XafDCFnFxMnK9sV+JUx/QPr9R9KXpdG5/vmDpAsHR+fasMfBI9Jj75g9mOzm80q3ni3172z/tQG71DZIT70n7ToQnetfPdKZPQrr/NJ9s2NfbnPMuM4sawQAAGJrwQbp5RXRuXaXNtJ/fMvs8QoAAOLT0i3S35ZG59qdWkp3TDL7pccaYyOhS8oZXUgcKT7p1nOkgQX2X/uiIdIFrLsa91pmSXdNNuvy2inVJ33vHJJciH8ZqWbwpUc7e6/r8ZiZXE4kuQAAAMJxVh/pmlFmJrqderYnyQUAgBuM6SndONb+rWe6tpFudyjJhfDw3DFcL9Un/cvZ5im+uaulhkDzrtcyy+zJ1TfM5cDgnFbZ0j0XSK+vkhZvav71ureVrh/Lurtwj8w0Mwjz3lrpnS+kYDPnarfPMx3Ebm3tiQ8AACDaxhWZJ65fXCLtq2zetXxe6byB0qQB5r8BAED8G9XDbHHy4hKp7FDzruX1SN/qb1b7YjsTdyDRhYTg9Ujn9DWzb15dIa0rCf8aqT5pdA9pylAzaAx3yUiVrh0lDe0izflUKjkY/jVyMqRJ/aWz+0hebmjhMik+6YLBZobrq59KW/aGf430FPNE9HkDpTR6CAAAwGW6t5OmXSS9vUZauNEs9xOunu2lq0ZInVrZHx8AAIiuLm2kH10ovbtW+uhLs91DuLq3la4YYa4F92AYCwmlXa502wTzBN/iTdLK7dKh02ws2LGFNLqnyfpnMw3V9Xp3NDe32/aZm9t1Jaf+UvN5zayVM4ukIYU8pQH3K2gt3TlZKqmQFm2SVu+UquuaPt7jkTq3ksb2lIZ3Z2keAADgbmkp0iVnSJMHSiu2SUs3S7srpFNNeM9Ol87oIo3rLeW3jFWkAAAgGlJ80oWDpYn9zdjwks1mX3PrFJ2BrDRpSBczQ7ygdcxChY1IdCEhtcuVLhtmfg4dMY3Z3sNSfcBsTJeeap7QK2jF7K1E5PFIPdqbn6AllVeaOlBRLfkDJrmVnW6+uDq1JLmFxNSpldmr4uqR0sEj0s795rPQEDAzFjNTTYKrc2tnNgkFAACIpoxUs9fo+N5SXYNJdu2ukGoapGDQrOjRLk8qbG2Wr/fYvcEXAABwVHqKNLaX+an3H9cXqJcCQTMe2C7XjA+2zqYv4HYMbSHhtcgyP0hOXo/Zb6g9+20hSXk8Zh+7VtlORwIAAOCM9NRjD8IBAIDkk5Ziljju3s7pSBAt7EIDAAAAAAAAAAAAVyLRBQAAAAAAAAAAAFci0QUAAAAAAAAAAABXItEFAAAAAAAAAAAAV/JYlmU5HQROZlmWjgQDTocRsiyvTx6Px+kwAAAJwrKkevd8DUqS0nwSX4UAAAAAAMAOjI2EjkQXAAAAAAAAAAAAXImlCwEAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKJLoAAAAAAAAAAADgSiS6AAAAAAAAAAAA4EokugAAAAAAAAAAAOBKSZHoKi8v1/Tp09WrVy9lZGSosLBQd999t6qrq3XrrbfK4/HoySefdDrMqPMHpOo68yeSj2VJdX5TBwJBp6MBAAAAAAAAAKD5UpwOINpWr16tCy+8UGVlZcrOzlb//v1VUlKixx9/XFu2bNGBAwckSUOHDnU20ChpCEird0gLN0k7yo/9vmtbaXyRNLSrlOpzLj5EX1WttGyLtHiztL/K/M7rkQYWSOOKpN4dJY/H2RgBAAAAAAAAAIiEx7Isy+kgoqW8vFxnnHGGiouLde+99+r+++9Xbm6uJOnhhx/Wfffdp5SUFAUCAR08eFB5eXkOR2yv0oPSsx9KFdVNH9MqW7rtXCm/ZWxiQmx9tlP6y2KT8GxKUQfpu2dLWWmxiwsAAAAAAAAAADskdKLrxhtv1KxZs3THHXfoiSeeOOn1oUOH6rPPPlP37t21detWByKMnr2HpcfeMcvUnU52unT3eVL7xMrzJb3PdkovLJBC+YB3aSPdPklKT/g5ngAAAAAAAACARJKwe3StX79es2fPVtu2bfXQQw81eszw4cMlSUOGDDnh99u2bdOll16q3NxctWrVSt/+9re1f//+qMdsp78sDi3JJZnj/rI4uvEgtqrrpL8uDi3JJUk790tvfR7VkAAAAAAAAAAAsF3CJrpmzZqlYDCoqVOnKicnp9FjMjMzJZ2Y6KqsrNSECRNUXFysWbNm6dlnn9WCBQt08cUXKxgMxiT25tq53/xE+xzEr0+2SvWnWK6wMcu2SPX+6MQDAAAAAAAAAEA0JOxCZfPnz5ckTZgwocljiouLJZ2Y6Hr22We1e/duffzxx+rSpYskqaCgQGeeeaZef/11XX755SHHYFmWjhw5IknKysqSx+MJ968RkcWbIj+vSxt7Y4EzIqkDR+ql1TulUT3sjwcAAAAAAAAAgGhI2D26CgsLVVxcrFWrVmno0KEnve73+5Wfn6/y8nJt2bJFPXqY0f2vE2MffPDBCcf37NlT5557rp577rmQY6iurj46myw/P19eb2wm0E34j9fUpuvwsM/bv2OFPvjN5fYHhJjyeFN01UPbIzp3w4e/0Zo3f25vQAAAAAAAAAAAnELHjh21YsWKiM5N2Bld1dXVkqSamppGX589e7bKy8uVm5ur7t27H/39unXrdM0115x0/IABA7Ru3bqI4yktLY343HAFrMhmjvmDHu3evdvmaBBrKelZEZ97pLaeOgAAAAAAAAAAcI2ETXR17NhRFRUVWrlypcaOHXvCa6WlpZo2bZokafDgwScsKVhRUaGWLVuedL3WrVtrw4YNEccTyxldVn1lZOc1VKpz5842RwMnBBpq5UvNCPu8VE89dQAAAAAAAAAAEFMdO3aM+NyETXRNmjRJ69ev14wZMzR58mT17t1bkrR8+XLdfPPNKi8vl6RGlzWMhk2bNik7OzsmZS3eJP39k/DPu/vmc/W3B4vtDwgx95dF0ortEZz3xHR1bDHd9ngAAAAAAAAAAIiG2EwxcsD06dPVpk0b7dq1SwMGDNCgQYNUVFSkUaNGqUePHpo4caIkaciQISec16pVKx08ePCk6x04cECtW7eORejNNry7lJEa3jkZqdKwblEJBw4Y3yf8c4o6SB1b2B8LAAAAAAAAAADRkrCJroKCAi1YsEBTpkxRRkaGtm/frtatW+uZZ57RvHnztHHjRkknJ7r69evX6F5c69atU79+/WISe3Olp0jnDwrvnPMHmfOQGLq2kQYWhH68zytdODh68QAAAAAAAAAAEA0ey7Isp4OItaqqKuXl5cnj8aiyslJZWVlHX5s5c6Z+8pOfaOvWrSooMJmCZcuWacyYMXrllVd0xRVXhFxOdXW1cnJyjpYZq6ULJcmypNdXSR+sP/2xE/pJl54hHbdVGRJAnV/63YfS5j2nPs7nlW4+UxraNSZhAQAAAAAAAABgm6RMdH2duOrTp4++/PLLE147fPiwBg0apLZt2+rBBx9UbW2tpk+frnbt2mnJkiXyekOfBOdkoutry7dK89dJpYdOfi2/pTSxnzSyR8zDQoz4A9J7a82+bYdrT369T750/kCpR/vYxwYAAAAAAAAAQHMl5WJ1a9askXTysoWSlJeXp/nz5+vuu+/W9ddfr5SUFF188cV69NFHw0pyxYuRPaQR3aVt+8zMnvfWSfV+KTtNmn4Rs7gSXYpPumCwNGmA9MVuadYSM9MrI0W690KpXZ7TEQIAAAAAAAAAEDkSXY3o2bOn5s6dG8uQosrjMTN2erSXFm0yia4UH0muZJLik4Z2kV5dYRJd6akkuQAAAAAAAAAA7ue+KUo2OF2iCwAAAAAAAAAAAPEvKWd0zZ8/3+kQAAAAAAAAAAAA0ExJOaMLAAAAAAAAAAAA7keiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArkSiCwAAAAAAAAAAAK5EogsAAAAAAAAAAACuRKILAAAAAAAAAAAArpTidABAtNX7pd0V0t7DUkNA8kjKSJXyW0odWkg+0r0AAAAAAAAAALgSiS4kpMpaaelmaeUOac8hKWg1flyqT+rSRhrdUxraRUrjEwEAAAAAAAAAgGswrI+EcqhGmrvKJLgCwdMf3xCQtuw1P3M+lc7qI00aYBJgAAAAAAAAAAAgvpHoQkKwLOnT7dIrK6Qj9ZFd40i99PYa6bOd0g1jpK5tbQ0RAAAAAAAAAADYjN2J4HqBoDRrqfSXxZEnuY5Xdkj69TvSoo3NvxYAAAAAAAAAAIgeZnTB1YJB6c+LpNU77b2uZUn/WC75g9I5fe29NgAAAAAAAAAAsAczuuBqr678/+3df5DX9X0n8OcuKMsCK+FHXJQVUFgB5UejYmisRg+nUE9zXn621OvNeDPXXhi9xrqXptOpdzOtpbXpxTiX8+aul2Y6sUw0polEYyNeiyS2EGKiyACiS1jcLa6guLgIy+79sSNxwy7uLrvfL58vj8fMdz7s9/3j9fp+F/7hOe/PZ+RDrj77/yj58Z7R2x8AAAAAABg+J7oorB2tycYdQ1vzuZVJ3fjkUGfyxScGt+Yb/5xc/MHkvPFD7xEAAAAAABg9Z8WJrvb29jQ1NWXu3LmpqalJQ0ND7rzzzhw+fDi33357qqqq8sADD5S7TYbgyLHkb58d+rq68cnk2t7rYL19tDfs6ukZej0AAAAAAGD0VPyJrueeey6rVq1KW1tbJkyYkIULF+bVV1/N/fffn927d+fAgQNJkqVLl5a3UYbkH3ckB98uXb0XWpKX9yeXnF+6mgAAAAAAwKlV9Imu9vb23HzzzWlra8tdd92V1tbWbN26NW1tbVm7dm3Wr1+fzZs3p6qqKosXLy53uwzS8e7kB7tKX/eZMtQEAAAAAAAGVtFB1x133JGWlpasWbMm9913XyZNmnRirKmpKUuWLElXV1dmz56durq6MnbKULy4L3mjhKe53vXTvb3P9gIAAAAAAM4MFRt0bd++PevWrcu0adNy77339jvniiuuSJIsWbLkxHvvBmPLli3LuHHjUlVVVZJ+Gbxt+8pT93h3sqO1PLUBAAAAAICTVWzQ9dBDD6W7uzurV6/OxIkT+50zfvz4JH2DrpdeeimPPPJI6uvrc9VVV5WkV4am5UD5au8tY20AAAAAAKCvig26NmzYkCS5/vrrB5zT0tKSpG/Qde2116a1tTXf/va3s2LFitFtkiHrOp60vlm++uUM2QAAAAAAgL4qNujas2dPkmTWrFn9jnd1dWXTpk1J+gZd1dUV+5VUhEOdvbcQLJeDh8tXGwAAAAAA6GtsuRsYLYcP9yYSnZ2d/Y6vW7cu7e3tmTRpUubMmTPq/cybN++MCNF+7QubU3vejLS2tWbmzOLdmnHitDlZeffGAcc/tzKpGz/w+rqan1/vuXXgeYc6ky8+cfL7rf/yWmbO/KVBdnvmKfrvHwAAAACAylNfX58tW7YMa23FBl319fU5ePBgtm7dmuXLl/cZa21tzd13350kWbx4caqqqka9n9bW1lGvMRjHjx8/cd23b1+Zuxm6uqPnnHp8fDK59v33qa4e3LxfdOzokUJ+b+8q+u8fAAAAAADeq2KDrhUrVmT79u1Zu3ZtbrzxxjQ2NiZJNm/enNtuuy3t7e1JkqVLl5aknxkzZpwRJ7rGjBlz4nrhhReWuZuhG3vuuaccP9T/Ab4T6mp6Q67u7uTQkaHv03XkjUJ+b+8q+u8fAAAAAIDKU19fP+y1FRt0NTU15etf/3r27t2byy67LPPnz8+RI0fy0ksvZdWqVZk9e3a+973v9Xk+12jatWtXJkyYUJJap/JH30ze7Exm1M9IS0tLudsZlj/+dvLaW/2P9Xe7wfe659bek1yHjiT3PDr02quuXZS/birm95ZUxu8fAAAAAADeVf4jRqNk5syZ2bhxY2666abU1NSkubk5U6ZMyYMPPpj169dn586dSVKyoIuR0zDl7KwNAAAAAAD0VbEnupJkwYIFeeyxx056v6OjI83Nzamurs7ll19ehs44HfPqk617ylN77vnlqQsAAAAAAJysooOugWzbti09PT1pbGxMbW3tSeMPP/xwkuTFF1/s8/Ps2bNz5ZVXlq5R+vWhWcm3fpS801XaunPPT84/r7Q1AQAAAACAgZ2VQdfzzz+fZODbFn7yk5/s9+ff+q3fyle/+tVR7Y33N+6cZNnFycadpa17zbzS1gMAAAAAAE5N0NWPnp6eUrbDMHx0QfJPLydHS3Sq64LJyaKG0tQCAAAAAAAGp7rcDZTD+wVdnPmmTkxu+aXS1KquSn5jeTLmrPzXAgAAAAAAZ66z8kTXhg0byt0CI+CX5yU/3ZvsbBv8mkOdfa+DcePlycwpQ+sNAAAAAAAYfWdl0EVlqK5K/v01yQPfT159Y3BrvvjE0GpcOSf51UVDbg0AAAAAACgBN2Oj0GrHJf/pXyUNo3DiatnFya9/uDdQAwAAAAAAzjyCLgpvYk2y5sbkVxpHZr9zxyafuCr5zIc9lwsAAAAAAM5kbl1IRRg3Nvn4Vcnii5Jv/HOy/9Dw9rl0RvKpZcnUiSPbHwAAAAAAMPIEXVSUeecnn//Xyc625JmdybZ9SU/PqdeMG9v7LK6PzEsu+EBp+gQAAAAAAE6foIuKU12VzJ/R+zpyLNl3MNn7evIvh5ItryTHjifnjkluvbL32V715yVjx5S7awAAAAAAYKgEXVS0mnOSSz7Y+0qSF/clb3Ym489Nls8tb28AAAAAAMDpqS53AwAAAAAAADAcgi4AAAAAAAAKSdAFAAAAAABAIQm6AAAAAAAAKCRBFwAAAAAAAIUk6AIAAAAAAKCQBF0AAAAAAAAUkqALAAAAAACAQhJ0AQAAAAAAUEiCLgAAAAAAAApJ0AUAAAAAAEAhCboAAAAAAAAoJEEXAAAAAAAAhSToAgAAAAAAoJAEXQAAAAAAABSSoAsAAAAAAIBCEnQBAAAAAABQSIIuAAAAAAAACknQBQAAAAAAQCEJugAAAAAAACgkQRcAAAAAAACFJOgCAAAAAACgkARdAAAAAAAAFJKgCwAAAAAAgEISdAEAAAAAAFBIgi4AAAAAAAAKSdAFAAAAAABAIQm6AAAAAAAAKCRBFwAAAAAAAIUk6AIAAAAAAKCQBF1wlujp6X29+2cAAAAAACi6seVuABgdXceTF/YlL+9P9h5I9h1Mjnb1jh06kvy3byUNU5OGKcmihuT8urK2CwAAAAAAQyboggrz5tvJMzuTH+5OOo4MPO/A4d7XT36WPPZc0lifXNOYLJqZVFWVrF0AAAAAABg2QRdUiJ6e5Nndybd+lLzTNfT1O9t6X431yWeuTqZMHPkeAQAAAABgJHlGF1SAw+8kDz6drPun4YVc77WzLVm7Ptnyysj0BgAAAAAAo8WJLii4tzqT//FU0vrmyO35TlfyNz9IOt5JPjp/5PYFAAAAAICR5EQXFFjn0eQrT49syPVe3/pR8sOXRmdvAAAAAAA4XYIuKLBvbklePTi6NR7ePPo1AAAAAABgOARdUFAvtCSbh/gcrc+tTO65tfc6WMe7k68/23sFAAAAAIAzyVkRdLW3t6epqSlz585NTU1NGhoacuedd+bw4cO5/fbbU1VVlQceeKDcbcKgdR1PvvHPQ19XNz6ZXNt7HYqWA8nGHUOvBwAAAAAAo2lsuRsYbc8991xWrVqVtra2TJgwIQsXLsyrr76a+++/P7t3786BAweSJEuXLi1vozAEz/0sebOztDU37kyuvTSpPivicQAAAAAAiqCi/8u6vb09N998c9ra2nLXXXeltbU1W7duTVtbW9auXZv169dn8+bNqaqqyuLFi8vdLgzaMztLX/P1jmR7a+nrAgAAAADAQCo66LrjjjvS0tKSNWvW5L777sukSZNOjDU1NWXJkiXp6urK7NmzU1dXV8ZOYfDa30qa28tTe/PL5akLAAAAAAD9qdiga/v27Vm3bl2mTZuWe++9t985V1xxRZJkyZIlJ957+OGH8/GPfzyzZs1KbW1t5s+fnz/4gz9IR0dHSfqG97Pn9fLV3nugfLUBAAAAAOAXVWzQ9dBDD6W7uzurV6/OxIkT+50zfvz4JH2Drvvuuy9jxozJn/zJn+Txxx/P7/zO7+QrX/lKVq5cme7u7pL0Dqeyt4xB1+sdyeF3ylcfAAAAAADea2y5GxgtGzZsSJJcf/31A85paWlJ0jfo+s53vpPp06ef+Pm6667L9OnTs3r16jzzzDO59tprR6ljGJy2N8tf/5IPlrcHAAAAAABIKjjo2rNnT5Jk1qxZ/Y53dXVl06ZNSfoGXe8Nud515ZVXJkn27ds37H7mzZuX6uryH6D7tS9sTu15M9La1pqZM68qdzslVwmf/6O//Uimzbm637HPrUzqxg+8tq7m59d7bj11nUOdyRefOPn9T//6bWnb8fQguwUAAAAAgFOrr6/Pli1bhrW2YoOuw4cPJ0k6Ozv7HV+3bl3a29szadKkzJkz55R7Pf1073/qL1iwYNj9tLa2DnvtSDp+/PiJ6+kEd0VVCZ//nXcGvndg3fhkcu3771FdPbh5/Xnttf2F/e4AAAAAAKgsFRt01dfX5+DBg9m6dWuWL1/eZ6y1tTV33313kmTx4sWpqqoacJ99+/blD//wD7Ny5cosXbp02P3MmDHjjDjRNWbMmBPXCy+8sMzdlF4lfP4xVccHHDvUf657Ql1Nb8jV3Z0cOnLquQPt9YG6CTle0O8OAAAAAIAzT319/bDXVmzQtWLFimzfvj1r167NjTfemMbGxiTJ5s2bc9ttt6W9vT1JThledXR05GMf+1jOPffc/NVf/dVp9bNr165MmDDhtPYYCX/0zeTNzmRG/YwTzyg7m1TC5/+7rcnT2/sf6+9Wg+91z629J7kOHUnueXR49Tc99c1MGDe8tQAAAAAAMJLKf8RolDQ1NWXq1KnZu3dvLrvssixatCjz5s3LsmXLcvHFF+eGG25I0vf5XO/V2dmZm2++Oa+88kqefPLJzJgxo5Ttw4BmTilf7akTI+QCAAAAAOCMUbFB18yZM7Nx48bcdNNNqampSXNzc6ZMmZIHH3ww69evz86dO5P0H3QdO3Ysn/jEJ7Jly5Y8/vjjWbhwYanbhwHNmlq+2heVsTYAAAAAAPyiir11YZIsWLAgjz322Envd3R0pLm5OdXV1bn88sv7jHV3d2f16tV56qmn8t3vfjfLli0rVbswKNMmJXOmJ6+8VvraV80pfU0AAAAAABhIRQddA9m2bVt6enrS2NiY2traPmOf/exn841vfCOf//znU1tbm2efffbE2CWXXJLp06eXul04yTXzSh90TZ2YzL+gtDUBAAAAAOBUKvbWhafy/PPPJ+n/toWPP/54kuRP//RPs3z58j6v9evXl7RPGMiSi5LJte8/byRde2lSXVXamgAAAAAAcCpn5YmuUwVdzc3NJe4Ghm7smORTy5L/9f9KU++iqck1jaWpBQAAAAAAg+VEFxTUwguTZRcPbc2hzuSNt3uvgzWmOvmN5b1XAAAAAAA4k5yVJ7o2bNhQ7hZgRPzbK5NX30haDgxu/hefGHqNTy1L6s8b+joAAAAAABhtzmhAgdWck/z29ckFHxid/T9+ZXL1JaOzNwAAAAAAnC5BFxTcxJpkzYrksgtHbs+ac5J/95HkVy4duT0BAAAAAGCknZW3LoRKU3tu8h+uSza/kjz6o6Tz6PD3mj8j+cyHk8m1I9cfAAAAAACMBkEXVIiqqmTZxcmCGcmmXckPX0re7Bzk2iTzL0iumZcsvLB3LwAAAAAAONMJuqDCTBqfrFyc3Hh58uK+5OXXkpYDScvBn5/0qq5Kpk5MGqYkDVOTRTOTaZPK2zcAAAAAAAyVoAsq1JjqZFFD7+td3T1JT0/vGAAAAAAAFJ2gC84i1VXpvU8hAAAAAABUAOc6AAAAAAAAKCRBFwAAAAAAAIUk6AIAAAAAAKCQBF0AAAAAAAAUkqALAAAAAACAQhJ0AQAAAAAAUEiCLgAAAAAAAApJ0AUAAAAAAEAhCboAAAAAAAAoJEEXAAAAAAAAhSToAgAAAAAAoJAEXQAAAAAAABSSoAsAAAAAAIBCEnQBAAAAAABQSIIuAAAAAAAACknQBQAAAAAAQCEJugAAAAAAACgkQRcAAAAAAACFJOgCAAAAAACgkARdAAAAAAAAFJKgCwAAAAAAgEISdAEAAAAAAFBIgi4AAAAAAAAKSdAFAAAAAABAIQm6AAAAAAAAKCRBFwAAAAAAAIUk6AIAAAAAAKCQBF0AAAAAAAAUkqALAAAAAACAQhJ0AQAAAAAAUEhjy90Ao6enJ3m9I9l7oPd1qDN5+2jvWOex5Md7koYpydSJSVVVeXsFAAAAAAAYKkFXBTr8TvJPu5Mf7EraO/qfc7Qr+etnev88bWLyy/OSqy9JJowrXZ8AAAAAAACnQ9BVQbqOJ0++kDy9PTl2fPDr2juSb/84efynyUfnJ7+6KBk7ZvT6BAAAAAAAGAmCrgqx90Dy9R8krW8Of49jx5O/35a80JL8xvKkYerI9QcAAAAAADDSqsvdAKfv+b3Jl753eiHXe7W+mXzpyd59AQAAAAAAzlSCroJ7oSX5vxuTru6R3beru3ffbS0juy8AAAAAAMBIEXQVWOsbyV8/k3T3jM7+3T3JV59J2kbopBgAAAAAAMBIEnQV1PHu5Os/7H2u1lB8bmVyz62918E4dry3zvERPjEGAAAAAABwus6KoKu9vT1NTU2ZO3duampq0tDQkDvvvDOHDx/O7bffnqqqqjzwwAPlbnNInt6e7D0w9HV145PJtb3XwfrZ6731AAAAAAAAziRjy93AaHvuueeyatWqtLW1ZcKECVm4cGFeffXV3H///dm9e3cOHOhNi5YuXVreRofgaFey4cXS1tzwYnLtpcm5Bfwb81Zn8sPdydbm5FBn73sd7yTP7k4+NKuYnwkAAAAAAKjwE13t7e25+eab09bWlrvuuiutra3ZunVr2trasnbt2qxfvz6bN29OVVVVFi9eXO52B+3He5K3j5a25ttHk+d+Vtqap6unJ3nip8k930q++5PeZ429+ziz493J3z6b3PNo8kJLObsEAAAAAACGq6KDrjvuuCMtLS1Zs2ZN7rvvvkyaNOnEWFNTU5YsWZKurq7Mnj07dXV1Zex0aH6wqzx1N+0sT93h6OlJHv1R8sTzp36+2NtHk//zD8lze0rXGwAAAAAAMDIqNujavn171q1bl2nTpuXee+/td84VV1yRJFmyZMmJ9zZu3JgVK1ZkxowZGTduXGbOnJlPf/rT2b79zHhI1TvHep+ZVQ4/O5C801We2kP1k58l/7hjcHN7kvzND5LXO0a1JQAAAAAAYIRVbND10EMPpbu7O6tXr87EiRP7nTN+/PgkfYOugwcPZtGiRbn//vvz5JNPZu3atdm2bVuWL1+elpby3+Nu38Gf336v1Hp6kn0HylR8iP5hkCHXu7q6kx++NDq9AAAAAAAAo2NsuRsYLRs2bEiSXH/99QPOeTe4em/Qdcstt+SWW27pM++qq67KpZdemkceeSR33nnnKHQ7eC0Hy1o+ew8kF3+wvD28n1cPJq+8NvR1z76UrFyUjB0z8j0BAAAAAAAjr2KDrj17eh+6NGvWrH7Hu7q6smnTpiR9g67+TJ06NUkyduzwv6558+aluvr0D9AtvPH3snDFf+537HMrk7rxp15fV/Pz6z23DjzvUGfyxSdOfv+P1/73rP77+wbXbJnMvvLTufKTfzHkdR3vJJd96Jocfr155JsCAAAAAAD6VV9fny1btgxrbcUGXYcPH06SdHZ29ju+bt26tLe3Z9KkSZkzZ85J48ePH093d3f27NmT3//93099fX0+9alPDbuf1tbWYa99r1lv9/95kt6Qa3Lt4Paprh783Pc6/HZn9u3bN/SFJTRt4dFhrz3wxltpP8M/HwAAAAAA0Ktig676+vocPHgwW7duzfLly/uMtba25u67706SLF68OFVVVSetv+66606c+Jo7d242bNiQ6dOnD6mH2tradHR05Jprrsn+/fv7rTNUE8aPG3Ds0MAZ2Al1Nb0hV3d3cujIwPMG2mvC+HG58MIL379QGdWOG/rJuZ6enlRVVeUDk2oy7gz/fAAAAAAAUEnq6+uHvbaqp6enZwR7OWPccccd+fKXv5yGhoZ8//vfT2NjY5Jk8+bNue222/Lyyy/n2LFj+exnP5sHHnjgpPU7duzIG2+8kVdeeSV//ud/nv3792fTpk256KKLSv1R+nh2d/K3zw5//T239p7keuPt5J5Hh77+1z+cXH3J8OuXwpudyX99NOke4t/s+vOS/3JTMgJ5JAAAAAAAUAKn/9CoM1RTU1OmTp2avXv35rLLLsuiRYsyb968LFu2LBdffHFuuOGGJAM/n+vSSy/N1Vdfnc985jN56qmn8tZbb+XP/uzPSvkR+tUw5eyuPxjnjU8WNwx93UfmCbkAAAAAAKBIKjbomjlzZjZu3JibbropNTU1aW5uzpQpU/Lggw9m/fr12blzZ5KBg673mjx5cubOnZuXXnpptNt+X/XnJWPL9Fs7Z0xy/nnlqT1UNyxMxgzhe/pAbXLVxaPXDwAAAAAAMPIq9hldSbJgwYI89thjJ73f0dGR5ubmVFdX5/LLL3/fffbv358dO3bk6quvHo02h2RMdbLgguT5ltLXnj9jaOFROV00Nbntl5OvbXr/WxhOrEn+4w1JzTml6Q0AAAAAABgZFR10DWTbtm3p6elJY2Njamtr+4z95m/+ZubOnZulS5dm8uTJ2bVrV/7yL/8yY8eOze/+7u+WqeO+rmksT9B1TWPpa56OpbOS2nHJ321N9h08ebwqyfwLkk9clUydWPL2AAAAAACA03RWBl3PP/98kv5vW/jhD384X/va1/KlL30pR44cSUNDQ66//vp84QtfyKxZs0rdar/m1SfTJyWvvVW6mtMn9dYtmsb65PdWJc3tydbm5NCRpLoqmTYxufqSZNqkcncIAAAAAAAMl6DrF6xZsyZr1qwpdUtDUl2VfOxDyf/+h9LV/Dcf6q1bRFVVyZzpvS8AAAAAAKByFOSJSyPrVEFXUVw+M7lyTmlqXTUnuWxmaWoBAAAAAAAM1ll5omvDhg3lbmFE3HpF8vL+5MDhwa851Nn3+n6mTOitAwAAAAAAcKap6unp6Sl3Ewzfa28lX/77wQdXQ1E3PrnjRs+xAgAAAAAAzkyCrgrQ/lbyPzck7R0jt+e0iclv3yDkAgAAAAAAzlyCrgpx5FjynR8nm3ad/l4fmZfc/EtJzTmnvxcAAAAAAMBoEXRVmJ1tyXd/kjS3D33trGnJTUuSxvqR7wsAAAAAAGCkCboq1N4DyaadyY625ODhged9YEJyaX3ykcakYUrp+gMAAAAAADhdgq6zQMeR3uDrrSNJ1/Fk7JhkUk1vsDWxptzdAQAAAAAADI+gCwAAAAAAgEKqLncDAAAAAAAAMByCLgAAAAAAAApJ0AUAAAAAAEAhCboAAAAAAAAoJEEXAAAAAAAAhSToAgAAAAAAoJAEXQAAAAAAABSSoAsAAAAAAIBCEnQBAAAAAABQSIIuAAAAAAAACknQBQAAAAAAQCEJugAAAAAAACgkQRcAAAAAAACFJOgCAAAAAACgkARdAAAAAAAAFJKgCwAAAAAAgEISdAEAAAAAAFBIgi4AAAAAAAAKSdAFAAAAAABAIQm6AAAAAAAAKCRBFwAAAAAAAIUk6AIAAAAAAKCQBF0AAAAAAAAUkqALAAAAAACAQhJ0AQAAAAAAUEiCLgAAAAAAAApJ0AUAAAAAAEAhCboAAAAAAAAoJEEXAAAAAAAAhSToAgAAAAAAoJAEXQAAAAAAABTS/wdyvSaUljthogAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "uccsd.get_circuit(decompose_multicontrol=True).draw(output=\"mpl\")" ] }, { "cell_type": "markdown", "id": "6c4b3d78-411a-4ec1-b02c-d054bb660fe4", "metadata": {}, "source": [ "For traditional Trotterized circuit, use the `trotter` argument." ] }, { "cell_type": "code", "execution_count": 7, "id": "b9ff5f8b-bcc1-455b-afe3-a2195f5a0097", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABroAAAT0CAYAAAAwptK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU9b3/8ffMZCULW4AEEvaEfZF9CQiKVuu+a1Frb13aW4ptLdD1pz6u1brUe13aW1urtLdVaQW14oaKyqIg+2KQhJ2QBEhIyL5MZn5/HFGQBDKTM3PmnHk9H488lJztc2ZOvt/vOZ/v+X5dfr/fLwAAAAAAAAAAAMBm3FYHAAAAAAAAAAAAAASDRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGwpxuoA0DK/X2pstjqKtovzSC6X1VEAgHPYrR6QzK0Lov38Jft9BrQFAHPZrQyQKAej/fwl6gIAAMwU7W2BaD9/BIZEV4RqbJYWLLI6irZ7+AYpnqsJAExjt3pAMrcuiPbzl+z3GdAWAMxltzJAohyM9vOXqAsAADBTtLcFov38ERiGLgQAAAAAAAAAAIAtkegCAAAAAAAAAACALZHoAgAAAAAAAAAAgC2R6AIAAAAAAAAAAIAtkegCAAAAAAAAAACALZHoAgAAAAAAAAAAgC2R6AIAAAAAAAAAAIAtkegCAAAAAAAAAACALZHoAgAAAAAAAAAAgC2R6AIAAAAAAAAAAIAtkegCAAAAAAAAAACALZHoAgAAkJS3YqFefmCG1WEAAAAAAAAgACS6AAAAAAAAAAAAYEsxVgcQDqWlpXrkkUe0ZMkSFRYWqlu3brr66qv14IMPau7cuXruuef01FNPac6cOVaHCiAEahuldXukvCKprlGKi5GyukhTs6W0FKujQziUVUsfF0gHyqQGr5QYKw3uKU3oLyXFWx0drPben29X/pqX5PN55fM26Q/fTZYkfe/Px+V2eyyODmZo9kmfHZI27JWO10kul9Q1SZo4UBrY3fg3nK2+SVq/V9peaLQL4mKkXp2lKdlSj1SrowMQDgePGe3BI5WSt1lKTpBG9ZbO6SPFUt0DgOMdr5PW7JJ2HzHahgmxxr3ApIFSaqLV0QFoL8cnujZv3qyLL75YJSUlSkpK0tChQ1VUVKQnn3xSu3fv1rFjxyRJo0ePtjbQECnM+1CLH5yp3Jse1dhLftriOk/c7FLf0Zfoip8uDXN0QGj5fNKbW6UVn0uNzacu23VY+mCHNKyXdNMk40YXzlPbIC1aK209KPm/tmxnifTGFiPhefk5kseh7zhHYz1w/MgerX/9tzr0+QpVlR2QJyZeHTqlK73/BA2Zfpuyhs48Zf1ZdzyrWXc8q7wVC5W3YqGu/dWH1gQeItF4DZxsywHplQ1SRe2pv997VFq/T0rvKN0wUerXzZLwEGI+v7Rsu/RBntHR4WS7DksffS4NypC+NVnq6NAHHNFeBpwQaN3gJNF+DRyplP7xibS/9PRlnx2SXtsoXTRCmjYo/LEBAEKv0Su9vM7o9OT72oOB/BLp7W1GJ9irxxmdoZwo2tsC0X7+0cKhf76G0tJSXXbZZSopKdE999yje++9VykpxusbjzzyiBYsWKCYmBi5XC6NHDnS4mgBmMnnl/7vY2nT/jOv99kh6X+WSXdfIKU49AFXtKppkJ56Vyo53vo63mbjIWdZtfSdac5NdkWTw3vW6+XfnCu3J1ZDcm9V117D5G2qU0VJgfZvW6bYxBRHP8zEqdbslhatOT3RfbKS49Lv35funCHlpIcrMoSD3y/9c61xHZzJzmLpf96R7r5Q6tQhPLEhvKgboldxhfT0e0a7sDU1DdLi9VJVvfTNUWELDQAQBo1e6X/fl/a20NnhBJ/faC8eqZS+d55zk12A0zn6T3fu3LkqLCzUnDlz9Nhjj52ybP78+XrhhRe0ZcsW9evXT6mpjFkCOMl7n509yXVCaZX03Epp7gUMX+Uk/7f6zEmuk20vlN7cIl12TmhjQuitfeV+eRtq9a3fbFa3Pqc/raqpKLEgKlhhX6mR5DhTkusEb7P03ArpZ5eS6HCSj3aePcl1QnmN9OyH0k8ulty0BRyHuiE6NXqlP31w5iTXyZZtl3p2kkb3CWlYAIAw+tenZ05ynWzPUaPjw02TQhsTgNBwbN/1HTt2aNGiRUpLS9NDDz3U4jpjx46VJI0aderNzt69e3X55ZcrJSVFnTt31q233qqysrKQxwzAHE1fvKUTiL1HjYeicIbCY9LnxYFts7pAamgKTTwIn4qSAiUkd23xQaYkJXXilZ1o8eGO04cmOZP6JmPuFjhDs8+4BgJRWC4VkO9wJOqG6LRpv1Ree/b1TrY8wHIDABC5KmqNocoDsW6PMZcXAPtx7BtdL774onw+n2bPnq3k5OQW10lMNMYpOznRVVVVpZkzZ6pLly568cUXVVdXp/nz5+vSSy/V6tWr5XbbMzfobaxVXRVP8REdthxoe8/Nk63OZ44Wp1gdxMPq+iZpwz5pSrbp4USEaKkHOnYfoPLindq1bokGjr/a6nAiSrRcA5Jxc7r1YODbrdklXThcivGYHxPC67NDp8/L1har8o05u5womsqAr6NuMETbNRBMe/BAmfHTu6v58QAAwuvjAmMo60D4/MY9wTdGhCYmq0VbW+Drov38nc6xia7ly5dLkmbObH2s9cLCQkmnJrr+9Kc/6dChQ1qxYoV69+4tScrMzNSUKVP073//W1deeWXogg6hNYvv1ZrF91odBhAW+UH2xi44bG4csE6w32XBYecmuqKlHphw5a90YPu7euOJa9QpPVs9c3LVo/94ZQ6ZoS69hlgdnqWi5RqQpL1HAnub64TKemNs/p6dzY8J4dWeesCpoqkM+DrqBkM0XQMNTUbCKhgFJSS6AMAJ2tMedGqiK5raAi2J9vOPVH6/X7W1Ri/FDh06yBXkvDKOTXTt329MztOnT8sDbHu9Xq1evVrSqYmupUuXKjc398sklyRNnjxZ/fv31+uvvx5UomvcuHEqKQnsybsnNlFXPWDe+DnDZ96p7InXtbjsld9e0O7952Rnq7mJd3sRGSbO/l9ljbws4O1KK6qVmTk4BBEh3C755QYlpvYIeLs3335fv7zx2yGIKHB2qwckc+uCYM8/I3uybnpggza++Tvt2/KW8lY8r7wVz0uSeg6apgvvWqiO3fu3uK3bE6uYuMSgYza7LrTbNRBJbYE+467X+OseD2rbiy+9UmX715scEcJt7LWPqd/4GwPerq7Bp8zM3mdfMQzsVgZIkVsOtqduCESknv8JdrwGgpWQ0l2X/mpjUNs+8rsn9O1lj5ocEQAg3Gbd/Y469RwW8HafbtiizNsuCUFEgYv2tkC0n3+08Pl8Ki425h8ZPXq0Nm3aFNR+HJvoqqmpkSTV1bV8YS1atEilpaVKSUlRv379vvx9Xl6errvu9At+2LBhysvLCyqWkpISHTp0KKBtYuLNnQm9U3q2eg+fZeo+T1ZUXCRvQxDjwwAhUFl+NKjtGmorA/5bRWRqqK0MKtFVWXE0Yq4Bu9UDkrl1QXvOPy1rhC68a6EkqbJ0vw7t+EjbP3xWRTtX6vXHr9BND2yQJybutO0GT52twVNnB31cs+tCu10DkdQWSOwVxLiFXyg6uEelEVIOIHgDjx0JarvG+irqgXaI5HIw2LohEJF8/pI9r4FgxSYcD3rbsqNFEVMOAACCV1tVrk5BbFdTeSxi6oFobwtE+/lHo8OHgx9iw7GJrvT0dJWXl2vjxo2aPHnyKcuKi4s1b948SdLIkSNPeR2uvLxcnTp1Om1/Xbp00c6dO4OOJVCe2OB7lFuhZ0ZPstWIGLVHtge1XfmB9erVq5fJ0cAK5Qc3qFN64GMQ1h7eHjHXgN3qAcncusCs809N66PUabdqcO4t+td/TVNx/mqV7P5UvQblmrL/k5ldF9rtGoiotkD1PvmavXJ7AmvqNlSXKdFVHTHlAIJXd/SzoLY7tj9y2gJ2KwMk+5SDoaob7HL+oRRJdUH5oe3q3Gt4m9f3+/1yuVxqOvZ5xJQDAIDgVRZtVs8g6vbq4i0RUw9Ee1sg2s8/Wpz8RlePHoF3Wj/BsYmuWbNmaceOHXr44Yd1wQUXKCcnR5K0bt063XLLLSotNSaeGz16dMhjWb8+8OFvGrzSgkUhCCZE8gsKFO/Yqwl20+iV7ntFqm0MbLtH7rlcAx65PDRBIawOlEmPvx3YNnEx0jsvPKCE2AdCE1SA7FYPSObWBWafv8vlUvqAiSrOX62a8tD0zjO7LrTbNRBpbYHnVkhbA3yx65sTuup/9+8JTUAIq2afdP8rxrxrgbj3++dr6AOFoQkqQHYrAyT7lYNm1w12O/9QiKS64JNd0qK1bV/f5XKpV2dp86rXFOTUEACACFJWLT3wmhTI1L1ul7To6R+pU4cfhSqsgER7WyDazz9a1NTUKDk5WZK0atWqoPfjNiugSDN//nx17dpVBw8e1LBhwzRixAhlZ2drwoQJ6t+/v8477zxJp87PJUmdO3dWRUXFafs7duyYunTpEo7QAbRTXIyUmxPYNr27Sv27hyYehF/vrtLAADuBTB4oJcSGJh6Ez/5t78rX7D3t997GOh3YtkyS1KXX0HCHBQvMGCwF8pwyLkaaGviLoIhQHrc0PcBpN9M7SoN7hiYeWIu6ITqN6SulBtgRfOYQkeQCAIfomiyN7hPYNuf0kTqZO1oegDBxbH4xMzNTK1eu1Lx58/TRRx9p3759Gjp0qJ555hndcccdGjBggKTTE11DhgxpcS6uvLw8TZ8+PSyxA2i/b4yQiiqk7W3olN25g/Qf07mpdZpv50pPLpOOVp193UEZ0mWjQx4SwmDlP36suqoy9R9zudKyRigmvoOqyg5q58cvqKIkX0Nyb1Va1girw0QY9O8uXT1OWtyGF+s9bum2XKlLcujjQvicN1QqKpc27j/7uqmJ0h0zjF68cB7qhugUH2P8Xf/+Pam+6ezrzxgsjet39vUAAPZxw0SptEo6eOzs6/buKl0/IfQxAQgNxya6JCNptXTp0tN+X11drX379sntdmv48FPH7L700kv1i1/8QoWFhcrMzJQkrV27Vrt379ajjz4alrgBtJ/HLX1nmvTaRml1gTGEUUuye0g3T5E60mPHcVISpLsvlP7+sfR5ccvruF3SxAHSNeOkGE9440NoTJv9uPZseE1F+au0a91iNdRWKL5DR6VljdS4yxZo6LTbrA4RYTRtkJQYJ726QapuaHmdLknSTZON+gDO4nYZdXynJGnF55K3lbZA/27SLVOlzknhjQ/hQ90QvbK6GO3B/1ttdIJrSXyM0Ulu5pCwhgYACIOEWOkHs6SX1khbDrQ8jKFLxptfN06U4hnlBbAtl9/vD2SoUkdYu3atJk2apEGDBunzzz8/ZVllZaVGjBihtLQ03X///aqvr9f8+fPVrVs3ffLJJ3K7wzPao93GIH34BjH+KCJWVb20dreUd0jaVyr5/FKcR/rRN6Sena2ODuFQclz6uEBanS81+41E6DeGSxMHSh0jdG5Tu9UDkrl1QbSfv2S/zyCS2wLeZuPGdv0+aWexUQ/EuI23eQdnSGFq3sFCNQ3Sp3uMN733HjWugViP8QA8M0JHJ7dbGSBRDkb7+UuRWxf4/cbf/scF0qb9X7UHrx4rje3H8NUAEA3Kqo164MMdX9QDLmnmUGMag64ROrJDtLcFov38o8XJc3RVV1crKSm4HohReVu/bds2SacPWyhJqampWr58uTIyMnTjjTfq9ttv15QpU7R06dKwJbkAmCslQZo1TJp7ofH/ktHDnyRX9EjvaAxhlvzF958cL104InKTXADMFeMxHmTeNfOreiApXhraiyRXtEiKN97W+OEFX10DHeIiN8kFwFwulzGk7c1TT20PTs0hyQUA0aJrsnTZOSfVAwnSpaMjN8kFIDBRmV88U6JLkgYMGNDikIcAAAAAAAAAAACIHFHZh/VsiS4AAAAAAAAAAABEvqh8o2v58uVWhwAAAAAAAAAAAIB2iso3ugAAAAAAAAAAAGB/JLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLMVYHgJbFeaSHb7A6iraL81gdAQA4i93qAcncuiDaz//E/uz0GdAWAMxltzJAohyM9vOXqAsAADBTtLcFov38ERgSXRHK5ZLi+XYAIGpFez0Q7ecv8RkA0Y4ygM8g2s8fAIBoF+1tgWg/fwSGoQsBAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLMVYHgJb5/X7V+pqtDqPNOrg9crlcpu3P75ca7XP6kqQ4j2TWRxDt5w/jGvA1WR1FYNyxXANmivZyINrPX7LfZ0A9YC7qAditDJAoB6P9/CXqAgAAzBTtbYFoP3+JzyAQJLoiVK2vWZ2Xv2t1GG1Wft4FSvKYdzk1NksLFpm2u7B4+AYp3qSPINrPH8bDzQ+etDqKwMycK3nirI7COaK9HIj285fs9xlQD5iLegB2KwMkysFoP3+JugAAADNFe1sg2s9f4jMIBEMXAgAAAAAAAAAAwJZIdAEAAAAAAAAAAMCWSHQBAAAAAAAAAADAlkh0AQAAAAAAAAAAwJZIdAGICs0+6Xid5PMZ//b7rY0H4dfolXxffO8+v3FNAIgefr9UXU89EM1oCwCob/qqDPD5v2obAgCig7f51OcC3mZr4wFgnhirAwCAUPD5pZ3F0meHpIPHpKJyqemkBkxlvfTQ61JWF2lgD+mcvlI8JaKjNHqlzQekgsPSwTLpcOVXDzWr6qUFi6SenY1rYGgvaUiG5Kb7B+AoJcelDXulA8ekwmNSTcNXyyrrpXuXSFldpT5dpXH9pM5J1sUK8/n9Rh2wrVAqLJMOlUuNX2sLPPhFW2BAd2lMXykh1rJwAYRAdb20YZ+096hxT1BW/dWyqnrpF/+SenWWeneVRvU26gOXy7JwAQAm8zYbbcGdxUY9UFzxVaKrql5a8E8po6OU2UUa3FMakSl5eC4A2BKPdQE4SqNXWl0grc6XSqvPvO7hSuNn/T7p1Y3ShP7SjMFSl+SwhIoQqaiVPvpcWrtbqm1sfT2vTzpQZvysLpC6JElTsqVpOVI8DzoB2/L7jZvZFTulXYfPvO7xOul4obS9UHpzq3Fje+5gI+kB+/I2f9EWKJCOVJ553SOVxs+GfdJrG6Xx/aQZQ6S0lLCECiBEisqlD3ZIm/Ybbb7W1DdJu48YPx/sMB50TssxygI6QAGAfVXXG/cDn+wyElqtafZJheXGz5rdUmqiNHmgNH2QlBQfvngBtB+JLgCOseeI9OIa6WhV4NvWNxmNoDW7pcvPMRIebnpz2orfL326R3plg/F9BupYjbR0s/RxgXTTJCk73fQQAYTY8Vrpn58ab/MGyu+Xth40fiYPlK4Yw9s9dnSgTHrhE+NtvkA1eKVVBdLaPdIlo40HHLQFAHvxNkvLtkvvfRbcsISFx4z7iY93Sd+aJPXoaH6MAIDQ2nJA+tenUnXD2df9uso66Z1txnOB6ydII7LMjw9AaJDoAmB7Pr/05hbp/c+k9g6z3+iVXl5nPOj8dq79evBs2f2hfvrHmaf8LiEuSZndcjRrzC26cuoP5fE4r+ivb5L+tkrKK2r/vo7VSL9/33ir44pz6M0L2MX2Qukfn0h1Z3iTs60+2SV9XiR9Z7oxnJWdRGs94PdL72w3Hky0d+6tpmbp1Q3S1gPGNZCSYE6MAEKrtEr6ywpjWKr22l8qPfqmdNU4aWp2+/cHAAi9pmbppTXGm/rtVVVv1Cnj+0k3TJRiPO3fJ4DQct5dLoCo4vNLi9Yaw9SZKb9Eevo96QfnS8k2fMA1c/RNmjD4m/LLr/KqEr274W/64+s/0YEjO/Tja/9kdXimqm2Q/ne5Md62mT763OjNdfMUxugGIt36vcZbPMH03m9Nea30+/ekO2facyjDaKoH/H5pyXppZb65+91zVHpymTRnltSxg7n7BmCuw8eNjkqVdebt0+sz3gioa5RmDTNvvwAA8zV6pWc/Mp7lmGndXmNe19vPlWJJdgERjUd3AGzt1Q3mJ7lOKK6Q/vhBcMPgWS271xjNGnuzLhh7i66fMU9P/nCNunXM1FufPquK6qNWh2eaRq/0pw/NT3KdsGm/8YCjvW8HAAid7YXmJ7lOaPBKf/rAGMrKbqKlHpCkN7aYn+Q64WiV0ZmiNoihbwCER3mN9AeTk1wnW7pZWrkzNPsGALSfzyctXGl+kuuEncXSX1cZxwEQuUh0AV/IW7FQLz8ww+owEICtB415tUKp8Jj0702hPUY4JMYlaXCfSfL7/SoqC1Fm0AJvbZX2lYb2GGt2Sxv3hfYYAIJzvC50Sa4TGrzS31YbiXU7c2o9sLPYmIsnlEqOS0s2hPYYiAzcD9iPz2/UA8dDlOQ64dWNUlF5aI8BAAjOh5+bM43BmWwvlFaEqGMVAHMwdCEAW6ppMN60CdRPLpJSE40en4+/3bZtPi6QRveWctIDP14kKf7iwWZqhy4WR2KOvUelD3cEtk0w378kLV4vZacb2wKIDH6/UQ/UBjgnVzDlwJFK6e2t0uVjAo8zkjitHqhvMuZhCFQw18D6vUZbYHhm4McDEDofF0gFhwPbJpgyoNlnJNR+fBFDWgNAJCk5bszZHohgnwu8sVka1lPqlhrY8QCER1Q00UpLSzV//nwNHDhQCQkJysrK0t13362amhp997vflcvl0tNPP211mLDIe3++XX/4brKWP/89Fe1cqT98N1l/+G6yfL5mq0PDGby5xZgcNFCpiVKnDoEnLBattddr6vVNtTpeU6qK6qPaW7xNTy75gXYd2qTBWROU2S3H6vDaze+X/rlWCvQljmC//9pGZ7zZBzjJZ4eMnpWBCrYc+OBz40baLpxeD0jSsm3GXGqBCvYa+NenkpfmoSNxP2BPNQ3Btc+CLQMKy0M3TGq4VNZJG/ZJq/OldXuMjhwAoofPL+06bIxa8skuoy3dZPOqbsl6Y07FQARbDzQ1G51gAUQmx7/RtXnzZl188cUqKSlRUlKShg4dqqKiIj355JPavXu3jh0zJl0YPXq0tYGGSPNzC+V76Z/y/ORHcl904SnL/H6/muf9TP4dOxTz9JNy9etrTZAmO35kj9a//lsd+nyFqsoOyBMTrw6d0pXef4KGTL9NWUNnnrL+rDue1aw7nlXeioXKW7FQ1/7qQ2sCD4HCvA+1+MGZyr3pUY295KctrvPEzS71HX2Jrvjp0jBHF7zaRuPGLJzKqqUdRdIwm/Tk/tuye/W3Zfee8rvc4Vfrh1f93qKIzLXrsFQc5gfOm/ZLV4yRUhLCe9z2cmo5EKhA6wYnceo1EOqha7/O75dW5UvXjg/vcYPl9Hqg0St9EuYRGI/XGcMmj+kb3uO2l1PLgDPhfuBUTr0GPt0T/mFlV+2Upg+S3K7wHre9DpRJH+yQthw4fbjfQenSuYOlob2siQ1A6HmbpVUFRpL7aNWpy5LipUkDpBlD7HevW1wRunm5WvN5sXS4Uuphs7e6nNoWCBTPBZx9DTg60VVaWqrLLrtMJSUluueee3TvvfcqJSVFkvTII49owYIFiomJkcvl0siRIy2ONjTct8yWb81aNT/zZ7nGjpGrW9qXy3xLXpV/6za5/+M2xyS5Du9Zr5d/c67cnlgNyb1VXXsNk7epThUlBdq/bZliE1McXWhFi3V7pEYLeh2tLrBPouuSiXdq+sjr5PU1aW/xNi368GGVHi9UXOxXLddte1bqF3+5+LRtvc2N8vma9c4jkdu1a1VB+I/Z7JPW7pZmDQv/sdE+1A3Oc7gy/De1klH/XDpaSogN/7ED5fR6YON+qS7AYSvNsLrAfomuaEOZHx18fuPvMdxKq436Z3BG+I8drA37jGEXm1t542FnifHzjRHSRSMkl82SeADOrL5JevYjo7NoS2oapPfzjLbV98+TutsogWNFPSAZw+ZeNdaaYyN4tBGdz9GJrrlz56qwsFBz5szRY489dsqy+fPn64UXXtCWLVvUr18/pabaqCQPgCs2VjHz7pF37o/V/Pj/KOahByRJ/oOF8i38m1yDB8l93TUWR2meta/cL29Drb71m83q1mfUactrKix4KgbTbdxnzXF3FBmNwKR4a44fiF5p2RqTM0uSNGHwxRreL1c//kOunlj8Pf3y5pckSSP6T9Prv6k+ZbvS40X6wZPjdMWUOWGPua0avdK2g9Yce8NeEl12RN3gPJv2WXPcBq8xZOLYvtYcPxBOrgck69oCu49IFbXGcDeITJT50eFgmVRadfb1QmHDXvskunYUSf/4+PS3uFryzjYpMU6aMTj0cQEIj2af9PyK1pNcJyuvkf53ufSTb0gpNpib2u+3rj24Ya905Rg6BtgNbUTnc+wcXTt27NCiRYuUlpamhx56qMV1xo410u+jRn11cZ9IjE2YMEHx8fFyOaDUcmUPlPvG6+XfsFG+N96Sv7lZzY88Jvn98sy7Ry6Px+oQTVNRUqCE5K4tFliSlNQpPcwRwWzNPulQuTXH9ksqPGbNsdtrWN8pmjXmFn24ZZE+2/dxi+s0eht0/9+u1vC+ufrW+b8Ic4Rtd6i8bTfroVBSaTzohr1QNzjPgTLrjn3QwmO3h5PqAb/f2mvAymPj7Cjzo4Ol9YBN7gf8funVDYG1m9/cbM3bsgBC47NDxhubbVVeY8xLawdl1ca0FlaobjA6PsFeaCM6n2MTXS+++KJ8Pp9mz56t5OTkFtdJTDS6KJyc6Nq1a5cWL16s9PR0jR9vk0kY2sA9+yapf381//lZ+X7/R/l35st9261yZdlkHLY26th9gOqry7Rr3RKrQ4ko3sZa1VWVtvhjN8UVgU80aia73Ni2ZPasX8vt9uiv7/y/Fpc/sfh7amyq17wbFoY3sABZ+R34/VKRRYnW9nJSORAo6gaDU64Bv9/aTgfUA9YrrTaG4bGKXTu9OKUMOBvK/NY56Rqwsiw+XCk1WFgGtdWuw0asgWhsNuY+A+AMq/ID32btbqkpckev/pLVbXKrjx8sJ7UFAkUb0eDka8CxQxcuX75ckjRzZutjaxYWFko6NdE1ffp0FRcXS5Luu+8+rV69OoRRho8rJkYx834i7w9/JN/SN+QaPkzuq6+0OizTTbjyVzqw/V298cQ16pSerZ45uerRf7wyh8xQl15DrA7PMmsW36s1i+89+4o2cCTAmzWzBXqzGEl6pQ3UzFE36v1N/9C2PSs1ov+0L5e9supJrd2xVE/PXaeEuMgej+nIcWuPf/i41K+btTEEw0nlQKCoGwxOuQbqmqTKeuuOb3U91B5OqQcOW10P2PQacEoZcDaU+a1z0jVg5d+h3y8drZIyu1gXQ1ts2Bf8ducyfCFge5V1wc1pW9MgfV4kjcgyPyYzWd4ePC4pwj+jljipLRAo2ogGJ18Djk107d+/X5LUp0+fFpd7vd4vk1gnJ7rcbvNfchs3bpxKSgKrXfxxcdIzvzc3kKQkKTZW8nrlGj9OLhPPNSc7R65G894Z9sQm6qoHAp9VMiN7sm56YIM2vvk77dvylvJWPK+8Fc9LknoOmqYL71qojt37t7it2xOrmLjgByLOyc5Wc1Nd0NufLNjzb83wmXcqe+J1LS575bcXmHIMM8//TPqOu0Hjrvtdi8t+cpGUepavMDXhq//ed1Xr61XWSY+/ffrvX3l1qRZc9702Rhu8uJhE/WmO+TOr3nT+L/XB5hf112X/T4997wNJ0uZdH+jZNxbowdvfUnqXvkHvOzsnW43e0F8D4677nfqOu6HFZWe7Btr6/UutXwM/+8X/066Pn2tjtMGL9nLAzPNvT90QCLPLQbtdA+GqBxJSuuvSX21sdblZ5UBrZcCx49XKzAz9E0DqgdZljrxMk2b/b4vLwtEWeHvZcv36plvbGG3w7FYGSJFRDjrlfkDiGjiTWXcvU6eeQ1tcFo724CWXX6WyfevaGK01pt72V2UMOT/g7T7ffUiZmRNDEBGAcOqYMVQX/GhZUNv+4Ec/0561fzc5InMNv+jnGjzzBy0uC0c98NjjT+g7yx5tY7TBi/a2AM8FouMa8Pm+GrorNzdXmzZtCuq4jk101dTUSJLq6lr+UBctWqTS0lKlpKSoX79+IY2lpKREhw4dCmyjhHjFmhiD3+9X8+/+W/I2Sb2z5HvhJbnPnS5XT3Nm0S0qLpLqG0zZlyTFxAffkzgta4QuvGuhJKmydL8O7fhI2z98VkU7V+r1x6/QTQ9skCcm7rTtBk+drcFTZwd93KLiInkbzBmktz3n35JO6dnqPXyWqfv8OjPP/0w6Dmj9/fDUxLZPDu92BzeRfG1tTeB/z0FIiA3uGhg1YIbefbT1gfj79Biidx75ahyCkmP79MDfr9cdlz6qUQNmBHXME4qLilTfFPprYMgX5XtL2noNBPv9S1J5xbGwXAPRXg6Yff7B1g2BMLsctNs1EK56oEPHM0+UF+pywNfcTD3QinDVAx0yW5+cJxxtgfq6WuqBVkRKOeiE+wGJa+BMmppa72QZjvbg0SOHVRyGcqA96upabzOfSVNjY1jKOAChVe/qFPS2x46VRnw50Keq9Vd7w1EPVFYepz3YCp4L0B5sz2dw+PDhoI/r2ERXenq6ysvLtXHjRk2ePPmUZcXFxZo3b54kaeTIkXK5XCGPJVD+uDgdNTEG36v/ln/LVrm/8225J0+S9wc/VPPv/luexx425fx7ZvQ0/Y0uM6Sm9VHqtFs1OPcW/eu/pqk4f7VKdn+qXoNyTdn/yXpm9DS1x4LdmHn+Z5Kc2HoKuLINh09NMBozPt+Zh75qbV8x7mb16tXr7Adqp7iY0F8D9Y21unfhlZo89HJdOXVOu/eX0bNnWHryx3lan6TtbNdAW7//M+0rKcETlmsg2suBUJ5/qOoGs8tBu10D4aoHPGcZVs+scqC1/TQ31lAPtCJc9UBKh9ZvPsPRFvDISz3QikgsB+16PyBxDZxRc+t/vOFoD3ZKSZQ7DOVAezTXHglqu4bKQ2Ep4wCEVmy8Tz5vo9xBPLSP9VVGfDmQGNf6s8xw1AOJcW7ag63guQDtwUA/A5/P9+VUUj169Aj6uI5NdM2aNUs7duzQww8/rAsuuEA5OTmSpHXr1umWW25Raakxwdro0aNDHsv69esD3qam2avOy9815fj+Q4fke26hXINy5L7+Wrk8Hrlvni3f83+V79V/y3PVFe0+Rn5BvpI85l1ODV5pwSLTdieXy6X0ARNVnL9aNeWh6XGRX1CgeJM+ArPPPxzMPP8zOVIpPfh6y8taep386+67yuixU1kv3fdK4Mf/6X9+S9Of+FbgGwaouVH64MnQHmPltsXaU7xFh0rz9eGW0y+4v/w0T907927z/gryC+RpX8eXNlmzS3ppbcvLznYNtPf7l6R/LnxCmV2eCG7jAER7ORCO8ze7bjC7HLTbNRCuekCS/us1qay65WWhLgfGDu2pP30xz2soUQ+07nitdG8r31042gLfv+1KLXnsysA3DJDdygApsstBu90PSFwDZ/LyOmlVfsvLQl0PeNzS1k/fV4wn8G3DqahceuTNwLe759u5euHe0NdzAELvb6ukjfsD26ZrsrThw3/KHdp3Atrts0Lpzx+1vCwczwV+/9ivNKTnr4LbOADR3hbguUB0XAM1NTVKTk6WJK1atSro4zo20TV//ny98MILOnjwoIYNG6bBgwervr5eu3bt0sUXX6y+ffvqnXfeOWV+Lify+3xqfvRxyeeTZ95P5PIYrXH39dfKv/pj+Z5bKPfECaYNYWi1/dveVdbQmXJ/LenmbazTgW3G2MRderU8ljvsIS1Fio8xCnorZEX4pNOBuGDsLbpg7C1WhxEwKyf+jnFLGZ2sOz6CQ93gPFldWk90hePYTmHXeqBjB6Mn7tl64IZKVldrjou2ocyPDlaWxT07KeKTXJLUs7PUv5u0J4ChYpITpFFZoYsJQHjl5gSe6JqarYhPcklSpsXtMSfdE0QL2ojO59hEV2ZmplauXKl58+bpo48+0r59+zR06FA988wzuuOOOzRgwABJcnyiy/fyEvnzdsh9+3fk6v1Vj1yXxyPPT39i+hCGVlv5jx+rrqpM/cdcrrSsEYqJ76CqsoPa+fELqijJ15DcW5WWNcLqMNEObpfUJ03KLwn/sWPcxg0jrJXRybpkZ1YXoxcv7IW6wXn6pEmbD1h3bFivT5q0zYIXDtwuHmxEOsr86GBlWdzXRvXA9ROlJ96R6prOvq7bJX1rkj2SeADapl83aVqOtLKVN2BbXH9QaGMyS8dEqXMHqTz000KeJi3Z6BgAe6GN6HyOTXRJ0pAhQ7R06dLTfl9dXa19+/bJ7XZr+PDhFkQWHv4DB+T76//JNWSw3NdcfdpyV98+pg9haLVpsx/Xng2vqSh/lXatW6yG2grFd+iotKyRGnfZAg2ddpvVIcIEEwdYk+g6p4/CNiwXWudxS+P6SasLwn/sCQPCf0y0H3WD84zrKy3dLDW3PmVfSHRMlAY74yV425s4wJpE14hMKSk+/MdF21HmR4f0jlKfrtL+svAf207twfSO0n+eL/3pQ6nqDG/BxnikW6ZIQyN7Sh4AAXK5pKvGGv9/tmTXwB7Sf0yXYm2U7J44QHp7mzXHhf3QRnS+qHxk+9lnn8nv9ysnJ0cdOpw+ofnLL78sScrLyzvl33379tW4cePCF2g7uXr3Vuwbr51xHc9NN8hz0w1hiij0+oy4UH1GXGh1GBEjc+gM3f13/xnXOdvySDQqS3olQaoO85BFU3PCezy0bmp2+BNdCbHSmL7hPaYZnFoOBCLa6wYnXgMpiUZdEOhQLO01eSBvdUaKoT2t6cVrx7aAE8uAM4n2Mr8lTr0GpuZI+z8J7zH7dLXfW51ZXaWfXSqt3W20n08e+tcl6byh0pRsY14eAM7jdktXj5NG95ZWFUhbDki+k4r8gT2k3GxpRJb92rmTB0rLtp96PqHmcUuTbJjocmpbIBDR3kaMhmsgKhNd27YZ6f7Whi287rrrWvz3t7/9bS1cuDCksQE4uxiPND1HenNr+I7ZL824sUVk6NlZGpQh7SwO3zGnZvNGHxBJZgyRNu2XwtUUj4sxbqYRGdxu6dwh0qsbwnfMXp2l7B7hOx6AMzunj/TmFqkijAnvGUPCdywzJcUbCa0ZQ6SjVdKTy6SaBiklQbrsHKujAxBqLpc0oIfxU9MgPfS6VP1FGTBnltXRBa9jB6Mz6vq94Tvm2L5GpzsAkcdmuXpznC3R5ff7W/whyQVEjvOGShkdw3OsGLd0wySjcWhnhUcLdPfTU3Tbwzn6wRPjta/kM6tDapfrxhsPnsOhW4r0DYZqBiJK767hnUPg8nOMm2m7c1JdMC3HuA7Cwe2SbnJAWwBwkliPdP2E8B1veKbxRoSduV1Sj1Tj/kaiTAOiUVL8V29uuR1QBlw5RkoO07DSKQnSFWPCcywAgSPRBcCWYjzStyYH3jCrrDN6fVbWtX2bb44yxre3uycW36VvTrxTCxfk64aZC/TootusDqld0lKky0YHtk0w379LxsPNcCXVALTdpaONsiAQwZQD2T2MYZ2cwEl1gcdttAUCHWYnmGvgguFSps2GKwOiwdBegc+VEkwZ0CFOum4CiSEAiDTJCdK1AXZ6CKYekIzOFczVCkSuqHxst3z5cqtDAGCCrK7GDeeitW3f5vG3AzvG6N7SjMGBbROJyquPKL9wvX57xzJJ0rQR1+jpV+boUOku9Uqz71hcU3OkA8ekdXvatn6g378kXTlW6t898O0AhF5cjPQf06Sn3pPqGtu2TaDlQNdk6eapzujx6sS6IL2j0RnhHx+3fRjLQK+BoT2lC4cHHBqAMLl6rFRSIe0va9v6gZYBHrf07VypI0NVAUBEGt1bmjlE+mBH29YP5rnArGHGPGYAIldUvtEFwDkmD5SuGReafY/Mkm6eYswDYndHKw6qS2qGPB6jf4PL5VL3zr11pOKAxZG1j9sl3TjRGCc7FC4dLZ3rgEQn4GQ9O0vfm2n0tjdb12TpP893zsNNp9YF4/pJN0w03sA12+AM6bZp9pucHYgm8bHSnTNDM5RpjFv6zjRjblgAQOS6/BxpeoiGNZ8xWLqEQcGAiMctGwDbmzZIui3XvIecLhm9gb6dawyRiMjmcUuzpxi97c164yIh1hgOa9Ywc/YHILT6pElzL5R6djJvnznpxj67Jpu3T4TOpIHSd881d46GaTnS7ecydC1gB0nxRscEMzs/dU6Svn++MTcXACCyuVzSVWONObtiTHraHesx9nnFGIauBeyA2zYAjjC6j9Svu/SvT6XthcHvp1uKkeDo18282CJBt05ZOlZZrOZmrzyeGPn9fh0pP6DunWw+o/YX3C5jLrXhmdKLn0jFx4Pf1+AM482AzknmxQcg9NI7Sj+5SHr3M+nd7ZKvrePYfU18jHEzO3mg825onV4XDM+Ufnap9PI6aXM7XlLrmmwMhziwh3mxAQi9hFjplqnSqN7GPUFVffD7mpJtvB2QEGtefACA0HK5pBlDpME9jecCbR3StiX90qQbJ0s9Us2LD0BokegC4BgdE6XvTpd2HZFW50tbD7b9QWefrsZ8T+f0MXrtOE3n5O4a2GuM3tv4d31j/G1auW2x0jpl2nZOltb07irdc7G05aBxDew52rbtXC5pRKY0Ndt4i8NpD7eBaBHjkS4eKY3vJ60ukNbulmrbOHdXpw7Gg83JA6QUhwxV+HXRUBckJxhDDe45YlwDmw9Izb62bZvZRcrNkcb04S0uwM5GZknZPaRP9xjlwJHKtm0X55HG9jPag5ldQhsjACB00jtKd18ofXZIWpUv7Sxp+7aDM4z24NCezpjGAogm3MIBcBSXy7ixze4hHa+VPi+WDh6TDpZJ5TWS12c0VpLjpczOUmZXaWD36LiZ/dE1z+jRRbfpxeUPqkNCquZd/7zVIYVEjMcYtmZsX6m4Qio4bHz/hcek6gbjgWeMW+qUZHzvvbsY8y7wBhfgHGkpxltZF4806oEDZUZdcPi41Og16or4GCmjk5TV1ejskJMeHfMwRUtd0L+78XPlWGlHkfH9F5ZJZdVftQU6xElZXYy6YEB34//p6AA4Q2KcMc/q9EFGx6e9R41y4FC5VN9odIaL9Rj1RVYX42dIr9DM9wgACD+3WxqRZfwcrTSSXYXHjLqgsu6r5wIpiV/VAzkZxig/AOyJRBcAx+rYQZo4wPiBlNV9kJ784SdWhxFWGZ2MHwDRKS7G6Nk/MsvqSCJHtNUFKQnShP7GD4Do43IZiewB3a2OBABglW6pxg8AZ4uCfqsAAAAAAAAAAABwIhJdAAAAAAAAAAAAsCUSXQAAAAAAAAAAALAlEl0AAAAAAAAAAACwJRJdAAAAAAAAAAAAsCWX3+/3Wx0ETuf3+1Xra7Y6jDbr4PbI5XKZtj+/X2q0z+lLkuI8klkfQbSfP4xrwNdkdRSBccdyDZgp2suBaD9/yX6fAfWAuagHYLcyQKIcjPbzl6gL7OLeJdLxOqljonT/1VZHAyDcKAPsI9rbAtF+/lJ0fAY1NTVKTk6WJFVXVyspKSmo48YEtRVCzuVyKckTvV+PyyXFR+/pR/35w7gGPHFWRwErRXs5EO3nL/EZRDvqAVAG8BlE+/kDABDtor0tEO3nL/EZBIKhCwEAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSyS6AAAAAAAAAAAAYEskugAAAAAAAAAAAGBLJLoAAAAAAAAAAABgSzFWB4CW+f1SY7PVUbRdnEdyuayOAgCcw271gGRuXRDt5y/Z7zOgLQCYy25lgEQ5GO3nL1EXAADMZbe6kLYAbQFYh0RXhGpslhYssjqKtnv4BimeqwkATGO3ekAyty6I9vOX7PcZ0BYAzGW3MkCiHIz285eoCwAA5rJbXUhbgLYArMPQhQAAAAAAAAAAALAlEl0AAAAAAAAAAACwJRJdAAAAAAAAAAAAsCUSXQAAAAAAAAAAALAlEl0AAAAAAAAAAACwpRirAwAAAAAAAID5mn1S4THp4DHjvxW1UnWDsay2Ufpgh5TVRcrqKsXzhAhwpMo66UCZUQ4UV3xVBtQ0SK9tlDK7SL27SN1SLQ0TANqFZgwAAAAAAICDVNRKn+ySPimQKutbXqep2XjILRlJrvH9panZUkansIUJIER8PunzYmlVvrSjSPK3sI7XZyS7T8jqIuXmSOf0keJ4YgzAZii2AAAAAAAAHKDRK721Vfroc8nX0pPtVjR4jQfiq/Kl0b2la8dLyQmhixNA6OwvlV5cI5UcD2y7g8eM7f69SbpmnJHwcrlCEyMAmI1EFwAAAAAAgM3tK5X+8bF0tKp9+9l8QNp1WLpugjSqtzmxAQg9b7OR6F6+Q/IHkOj+upoG6W+rjbLguglSCklvADbgtjoAAAAAAAAABG/bQempd9uf5DqhukF6fqX0/mfm7A9AaDV6pWc/kt7Pa1+S62RbD0pPLJOOVZuzPwAIJRJdAAAAAAAANvXZISMp1ewzf9+vbz51Dh8AkcfbLP3lI2NOLrOVVkm/f9+Y9w8AIhmJLgAAAEl5Kxbq5QdmWB0GAABAmx2tlBauDGw+rkC9tlHKOxS6/QNon1c3SDtLQrf/smojkRaKZDoAmIU5ugAAAAAAAGzG55NeWCM1NQe23U8uklITpco66fG327bNorXSgkulDnGBxwkgdPJLpFUFgW0TTBlw8Ji0PE+6YHjgMQJAOJDoAhBVvM2Sxy25XFZHAiv4/UYvtBiP1ZEgkrz359uVv+Yl+Xxe+bxN+sN3kyVJ3/vzcbndXCxO0+yTXJLcjGsQtWgLAHCKlfnS3qOBb5eaKHXqENg2x+ukf2+UbpwU+PEiDW0BOKUt0OiVXlwT+HbBlAGS9PY2aUSWlN4x8G0BINSiItFVWlqqRx55REuWLFFhYaG6deumq6++Wg8++KDmzp2r5557Tk899ZTmzJljdaimK8z7UIsfnKncmx7V2Et+2uI6T9zsUt/Rl+iKny4Nc3RA6Pn90q7DRg+nvENGb0e3S8rsIuXmSKN7S3FRURJGL2+ztPmAtDpf2l9mDOsS65EGZRjXQE66cU04VTTWA8eP7NH613+rQ5+vUFXZAXli4tWhU7rS+0/QkOm3KWvozFPWn3XHs5p1x7PKW7FQeSsW6tpffWhN4CESjdfA1x2tlFYXSOv3StUNxu86J0mTBkiTBkodE62ND6Hl90t7jkqr8qXPCqXGL9oCPTtLU7OlMX2leAe3BSgDDIHWDU7CNeBMzT7j7Ypw+nSPdNHI4B6QW62s+ou2wB6pst74XacO0oT+0pRse54T2s7vN+4FV+VL2w5KDV4jyZXR0fj+x/WTEmKtjjJwG/dJ5TXhO16zT/pwh/0S3tSDfAaIDg6+pTNs3rxZF198sUpKSpSUlKShQ4eqqKhITz75pHbv3q1jx45JkkaPHm1toABMV10vPbfCeLh1Mp9fOlAmvfCJ9Pom6bvnSn3TrIkRoVV4THr2o9Mnzm1qlrYXGj+9u0q3n2v0aoP9Hd6zXi//5ly5PbEaknuruvYaJm9TnSpKCrR/2zLFJqY4+mEmTuXzG73PP/z89GXlNdJbW6V3tklXjZWmDQp/fAi92kZj7pr8r81b4fMbdcSitdLSzdJ/TJMG9LAkRIQBdQOcaHuh8ZZVOPn80ie7pItHhve47eH3S29ukd77TPr6NGYVtdKy7cayb46Szh9q/zd8cLr6Jun/VkuffW2eOb9fKqqQXl5ntAVumyYNzrAiwuD4/UbiLtw27JMuH8MwpgAij6MTXaWlpbrssstUUlKie+65R/fee69SUlIkSY888ogWLFigmJgYuVwujRxpo5YagLOqbZR+/55UfPzM61XVG+vNmSX1IdnlKEXl0tPvGTc2Z3KgTHrqXenuC6XkhPDEhtBZ+8r98jbU6lu/2axufUadtrymIoSzNCOi+P3Svz41Hsidic8vLV4veX3SzCHhiQ3h0eCV/vd9Y06JM6lpkP53ufT986UB3cMTG8KLugFO9PFZ6rdQ+WSXdNEI+ySEXt0ofdRCh5eT+fxGosPrM84NztHULP3pg9M7v35dfZOx3p0z7ZPsKjwmFZaH/7hNzdKGvXQSAxB5HD0i8dy5c1VYWKg5c+boscce+zLJJUnz58/XqFGj5PV61bdvX6WmploYKQCzvbrh7EmuE5qapedXGq/hwxl8fuM7PVuS64SjVUZPPthfRUmBEpK7tvggU5KSOqWHOSJYZcuBsye5TvbaRuOBAZxj6aazJ7lO8Pqk51cYc13Aeagb4DQ+n7T3iDXHrqwzhgG0g7xDZ09yneztrdIeiz5XhMbbW8+e5DrB5zfeAm/rPaTVdlt4rVp5bABojWPf6NqxY4cWLVqktLQ0PfTQQy2uM3bsWG3ZskWjRn11w/Pyyy/rxRdf1Pr163X06FH17t1b11xzjX7+858rOTk5XOGbzttYq7qqUqvDAMKiut4YqzoQFbXG8B+jeockJITZzmIjeRWIrQeN68Cp4/NHSz3QsfsAlRfv1K51SzRw/NVWhxNRouUaOGHFzsC3WZVvvzkH0LL6JmMumUBUNxhzOk7oH5qYrBZtZcDJqBsM0XwNOM2RKmO+QascPCalpZx9PasF0xZYmS/15+1eR2j0BtbpSTLaD+v3GnM5R7q2duYJBbt2DqMe5DOAszk20fXiiy/K5/Np9uzZrSaoEhONCVlOTnQ99thj6t27tx588EFlZmZq8+bNuv/++/XRRx9pxYoVcrvt+RLcmsX3as3ie60OAwiLT/cYPbMDtbqARJdTrC4IfBufX1qzy5hg24mipR6YcOWvdGD7u3rjiWvUKT1bPXNy1aP/eGUOmaEuvaJ7XLpouQYkqbii7b13T7Zhn3TFGCmROQdsb8NeY+jCQK0ucG6iK5rKgK+jbjBE8zXgNFY/ZC48Jp3Tx9oYzqa0Svq8OPDtth40hrdPYUhz29tywJjSIFCr8+2R6DpkwbCFJ5RWG0nBhFjrYggG9SCfAZzNsYmu5cuXS5Jmzmx9UuHCwkJJpya6Xn/9dXXr1u3Lf5977rnq1q2bZs+erVWrVmn69OkBxzJu3DiVlAQ27rsnNlFXPRDEk9pWDJ95p7InXtfisld+e0G795+Tna3mpjDPhAu0Yvz1/6M+Y68NeLutBUeV+e1zQhARwu3iBR8rqUvgWctnX3hDt3/zrhBEFDi71QOSuXVBsOefkT1ZNz2wQRvf/J32bXlLeSueV96K5yVJPQdN04V3LVTH7i0/xXZ7YhUTlxh0zGbXhXa7BiKpLZA16gpN/NbvA96uqVkan3uRKoq2hyAqhNM5V/5GAyZ/O+DtdhfVKjMzMp5u2a0MkCK3HGxP3RCISD3/E+x4DaBlAybfpnOufKDFZT+5SEo9S3MmNeGr/953VevrVdZJj799+u///Pzf9f3LftbGaK2RMeQCTb3t+YC3a/ZJ02ZdrdJ9n4YgKoTTiG/+SoPO/V7A2xWV+5SZ1ceY8DWCXfLLDUpM7dHisrOVA+0tAyRp5DkTVVtxqI3RBs/MutCO9SBtAUQDn++rtxVyc3O1adOmoPbj2ETX/v37JUl9+rTczcjr9Wr16tWSTk10nZzkOmHcuHGSpEOHgivAS0pKAt42Jt7csbM6pWer9/BZpu7zZEXFRfI21IZs/0AgRgbzOpckV0x80H/niDDu4LqWNXn9EXMN2K0ekMytC9pz/mlZI3ThXQslSZWl+3Vox0fa/uGzKtq5Uq8/foVuemCDPDGnv7IzeOpsDZ46O+jjml0X2u0aiKS2QMcBwcdxrKJSxRFSDiB4Q4Ic08sdQW0Bu5UBUmSXg8HWDYGI5POX7HkNoGXdqlqfJCs1se1DcbvdwQ3bXVffGDFlZWs6ZNYEvW358aqIPz+c3cCG4CbbcrndKjl8VM1NDSZHZC6/Wh9xqq3lQLBlgCQdKS3T8cOh/zsxsy60Yz1IWwDR5vDhw0Fv69hEV02N0aipq2s5g7xo0SKVlpYqJSVF/fr1O+O+PvjgA0nSkCHBDWuRnh745Mae2OB7lFuhZ0ZPsvWIGB5ffVDbeesq1KtXL5OjgRW89cclZQS8ndtXHzHXgN3qAcncusCs809N66PUabdqcO4t+td/TVNx/mqV7P5UvQblmrL/k5ldF9rtGoiktkCHIJ5V+/1+uVwudUyKlTtCygEEL0ZBjFUkqak2ctoCdisDJPuUg6GqG+xy/qEUSXWBk6Ukt35tVLbh409NMB5w+3xS5RlunVrbV3ysO2LKytYkx7uC3jalQ0zEnx/OLs4VXKLL21in9O5pJkcTAr7Wz+9s5UB7ywBJSuvSSckxof87sVtdSFuAtgAC5/P5VFxsjDfco0fLb6q2hWMTXenp6SovL9fGjRs1efLkU5YVFxdr3rx5kqSRI0fK5Wq9AXTo0CH9+te/1kUXXaTRo0cHFcv69esD3qbBKy1YFNThLJFfUKB4x15NsJsdRdIzHwS+3Ten9NafvxjSFPb2xmbp3c8C3+6+H12rUY8HPuxlKNitHpDMrQvMPn+Xy6X0ARNVnL9aNeWh6Xlodl1ot2sgktoC9U3SvUsCm6PJ5XKpe6qUt/EjnaFpCJvYc0R68t3At5sxuqv+N0LaAnYrAyT7lYNm1w12O/9QiKS6wMnOdL/T2jBjJ7vvKuMtjsp66b5XAj/+PXNu08zf3xb4hmHU1GycW02AL+V0TpK2fvKWbDo9O05SeEx67K3At5uQnainI6QtcCZPvSvtPtLysrOVA+0tA2I90s7t6+UJw9+J3epC2gK0BRC4mpoaJScnS5JWrVoV9H4cW3XPmmW8hvnwww8rPz//y9+vW7dOM2fOVGlpqSSdMXlVXV2tK664QnFxcXruuedCGi8A8wzKkNKSA99uSrb5scAaU7IV8IPqjonS8MzQxIPw2b/tXfmaT89ueBvrdGDbMklSl15Dwx0WwiwhVhofxHQ7uTmBlx2ITP26SRmdAt9uKm0BR6JugNNkdbH2+JkWH78tYj3SxAGBbzdloEhyOURmF6lvEC9m5UbGVJ1nZeXfYa/OCkuSCwAC4dj86vz58/XCCy/o4MGDGjZsmAYPHqz6+nrt2rVLF198sfr27at33nnnlPm5TlZXV6fLLrtMe/fu1cqVK5WREfgQWACs4XZJF4+U/u/jtm8zrp/UIzV0MSG8OidJkwdKHwcwZ+tFI2msO8HKf/xYdVVl6j/mcqVljVBMfAdVlR3Uzo9fUEVJvobk3qq0rBFWh4kwmDFY2rBXqmvjqDVpydKEIJJjiEyuL9oCz61o+zYjs+zx8BaBo26A0yQnGO3d8uCnoWqXzM7WHDdQ0wdJn+6Wqtv4VlenDsY9BJzjopHSM8slfxvXH5RhdJaxg94WtlmsTrYDQEsc+0gvMzNTK1eu1CWXXKKEhATt27dPXbp00TPPPKM33njjy7e8Wkp0NTU16dprr9X69ev11ltvaehQevcBdjO2n3Tp6LatOzhDumFiSMOBBa4ZJ41o4xtaFw7nptYpps1+XAPHX62S3Wu0Zsl9ev8vd2rLsieV3LmnZt3xF11w5/NWh4gwSUuRbp+hNg2b0amDdNdM400wOMfILOnqcW1bd0B3afaU0MYD61A3wIlGZllz3Jx0KTGIuTCt0KmDdMeMtsWbkmC0BZITQh4WwujEvX5bXtjv01X6zjT7vN0/uKfx5qIVrCp/AOBMXH6/v60dGxyjurpaqampcrlcqqqqUocOHb5c5vP5dOONN+rf//633nzzTZ133nmWxGi3MVgfvqFtD5KAcNu8X1q2XSqqOH1ZcoIxRNGFw3mTx6l8Pun9PGllfssT6fZIlS4YbrzRF2nsVg9I5tYF0X7+kv0+g0htCxSVS29skfIOnd6b1+OWzuktXXqO8TAMzrS9UHp7mzFXx9clxRsdHS4aIcVY9LCoNXYrAyTKwWg/fyly6wInOlwpPfR6cNuemJ+nojbw+Xm+M00a1Tu441rlcKUxh++2QunrT8DcLuN8Lh0tdQ1i+HvYw44ioy2wv/T0ZYlx0sT+0jdHSXE2K79e+ET6dE/g27WnDOieKv380vAlBO1WF9IWoC2AwJ08R1d1dbWSkpKC2k9UXnafffaZ/H6/cnJyTklySdIPfvAD/etf/9LPfvYzdejQQWvWrPly2YABA9Stm03eYQYgSRrdx7hx2XtUyiuSVnwuNTZLibHSfVdG3kMtmMvtNhJZ5w01bmxf+ERq9BqNrjtmGD347dJjD0BwenY2/t7LqqWN+6R3txv1QEKs9KvL6bkdDYZnSsN6SQfKjKTXRye3Ba6yrjc0ALRHj1RpULq0syR8x7TrnLY9UqX/mG4M9bhhn7Rs2xdtgRjpF5dLqYlWR4hQG9LT+Dl4TNp2UPpwx1dtgfuvsl+C64TcnOASXe09JvfQACJRVL7DsG3bNkktD1v41ltvSZJ++9vfavLkyaf8vPHGG2GNE4A5XC6pf3ejl96JYSviYkhyRROPWxrd27iRkYwH3AN70EAHoknXZCPxfaIeiI8hyRVNXC6pT5p0yehT2wIkuQDY2RVjwjsyxVXj7D0SRuckadawk9oCsSS5ok1WF+PNrZPbAnZNcklS767S+DCOTpLRUZrCkP8AIpSNi/PgnSnRtW/fvjBHAwAAAAAAEJienaVvDJfe3Br6Y43ubfwAiCxXjTXe7GxpqH4zuV3StybTYRhA5LJxX5zgnSnRBQAAAAAAYAfnD5P6BzjDQmWdMTdPWx+Md06Srh0feGwAQq9DvJGAcgcwWkmgZYAkXTxSyuoaeHwAEC5R+UbX8uXLrQ4BAAAAAACgXTxuYy7KP7xvzD/UFo+/3fb9d0yU/vN8hvsFItngDGn2FOnvH0t+/9nXD6QMkKRzBxvDfgJAJIvKN7oAAAAAAACcIDHOSEZl9zB3v91TpbkXSt1SzN0vAPON7SvdlivFmTy04DdGSFeOYX5rAJEvKt/oAgAAAAAAcIrEOOn750krdkpvbJGamoPfl0vS9MHSJaOkOJ4aAbYxqrfUq7P04hpp95H27atrsnTTJGmgyQl0AAgVmiwAAAAAAAA253ZLM4ZIQ3tJb22Vth6Umn2B7WNQuvEGR//uoYkRQGilpUg/mCWt2SV9sEM6WhXY9knx0pSB0qzhUjxPjQHYCEUWAAAAAACAQ3RPlb6dK1XWSWt2SzsOSYfKpcYW3vJyu6SenaTsdOPhdrfUsIcLwGRulzQlW5o8UCo4LK3dLe0rlcqqW14/OUHq3UUa01ca3VuKMXn4QwAIBxJdAAAAAAAADpOaKF043Php9klHKqWKWmNYwxi38XA7o5MUy0NtwJFcLikn3fiRpJoGqbhCqm+S/H5jaNIeHaWOiczBBcD+SHQBAAAAAAA4mMdtJLUyOlkdCQCrJMUz5xYA53JbHQAAAAAAAAAAAAAQDBJdAAAAAAAAAAAAsCUSXQAAAAAAAAAAALAlEl0AAAAAAAAAAACwpRirA0DL4jzSwzdYHUXbxXmsjgAAnMVu9YBkbl0Q7ed/Yn92+gxoCwDmslsZIFEORvv5S9QFAABz2a0upC1AWwDWIdEVoVwuKZ5vBwCiVrTXA9F+/hKfARDtKAP4DKL9/AEAiPa6MNrPHwgEQxcCAAAAAAAAAADAlkh0AQAAAAAAAAAAwJZIdAEAAAAAAAAAAMCWSHQBAAAAAAAAAADAlkh0AQAAAAAAAAAAwJZIdAEAAAAAAAAAAMCWSHQBAAAAAAAAAADAlkh0AQAAAAAAAAAAwJZIdAEAAAAAAAAAAMCWSHQBAAAAAAAAAADAlkh0AQAAAAAAAAAAwJZIdAEAAAAAAAAAAMCWSHQBAAAAAAAAAADAlkh0AQAAAAAAAAAAwJZIdAEAAAAAAAAAAMCWSHQBAAAAAAAAAADAlkh0AQAAAAAAAAAAwJZIdAEAAAAAAAAAAMCWYqwOAC3z+/2q9TVbHUabdXB75HK5TNuf3y812uf0JUlxHsmsjyDazx/GNeBrsjqKwLhjuQbMFO3lQLSfv2S/z4B6wFzUA7BbGSBRDlIOAjATbQHYrR6UaAtE+/lLtIdgHRJdEarW16zOy9+1Oow2Kz/vAiV5zLucGpulBYtM211YPHyDFG/SRxDt5w/jhuaDJ62OIjAz50qeOKujcI5oLwei/fwl+30G1APmoh6A3coAiXKQchCAmWgLwG71oERbINrPX6I9BOswdCEAAAAAAAAAAABsiUQXAAAAAAAAAAAAbIlEFwAAAAAAAAAAAGyJRBcAAAAAAAAAAABsianhADheo1cqqpDKa4z/l6SmZqmmQUqKtzQ0hEltg1RY/tX33+iV9h6VenWW4qgJAcfz+aQjVdLh46fWA2XVUpckyeWyNj6EXlOzVFxhfOcnXwPV9VJygqWhAQDCwOeXjrbQFjhaJaUl0xaIBt4v2gKlX2sLVNVJKYmWhgYAMAGP9wA4UnmN9HGB9NkhqeS4cWNzstpG6ZcvS52TpIE9pKnZUp+u3OA4ycEyaXWBVHDYeLB5srom6YllxvednioN7SVNyZa6JlsTKwDzNTRJG/YZPwePffVA44TaRum/XpM6xEl90qQJ/aWRWZKH8Q4c43it9MkuaVuh8WCrpbbArxZLnTpIA7sb9UC/brQFAMApGr3Spv3S+r3SgTKpoYW2wG/+LSXGSb27SOP7S6N7SzEea+KF+arqpDW7pa0Hjc6vzb5Tl9c2Sr9eInVMlPp3l6YMNJ4P0BYAAPsh0QXAUUqOS0s3Gwkuv/+sq6u8Rlq3x/jJ7Cx9Y4Q0IivkYSKE8g5Jb28zbmbPxu+Xio8bP8vzpCE9pUtHSz07hzxMACFS3yS9vdV4qFHfdPb1axulHUXGT2qCNG2QNHMID7ns7GiV0RbYdvD05FZLKmql9fuMn4xO0oXDjQedPOQCAHtqaJKWbTc6O9Q2nn39ukZpZ4nx8+oGKTdHOn+YFEtbwLaOVUtvbJE2Hzg9udWS43VGUnTTfqlHqjRrmDSuH20BALATEl0AHMHnkz7YIb21VfK2oSHbksJy6S8rpDF9pGvG23NYwy27P9RP/zjzlN8lxCUps1uOZo25RVdO/aE8HmcW/bWNxo3pp3uC294vKa/IuMG9cLhxc8ObHYC9fF4svbTGSFwEo7LeeCiy6YD0rUlSZhdz4wuHaK4HfH5p5U4jydXUHNw+iiukv66SNmVJ141nKCMAsJuCw0Zb4OsjOrRVdYPRaW7TfummyVLfNHPjC4dobgv4/dLHu6R/bzz9Db62Olwp/eMT4xq4fqLx5jcAIPI5s2YDEFXqGqVnP5J2HzFnfxv3S7sOS3fOtOdDTkmaOfomTRj8TfnlV3lVid7d8Df98fWf6MCRHfrxtX+yOjzTFVdIz3wQ/MPtkzX7jIRp3iHjGrBjwhOINn6/kdx4P8+c/RWVS4+/LV03QZo80Jx9hlu01QMNTdLzK41kpxm2HjTaFXfMsOdDTgCINn6/8RbXW1vN2d/hSmOo8yvHSOcONmef4RZtbYFGr/S31dL2QnP2l1ck/XapdPu5xnCGAIDIRl91ALZW2yj94X3zklwnVNZLT7/XtuHvIlF2rzGaNfZmXTD2Fl0/Y56e/OEadeuYqbc+fVYV1UetDs9UReXSU++ak+Q62f4yY7/V9ebuF4C5/H5pyXrzklwn+PzSorXSR5+bu99wiaZ6oKFJ+uNy85JcJ9Q0GG2MPSa3MQAA5vL7pdc3m5fkOnm/r2yQ3vvM3P2GSzS1BRq90p8/NC/JdUJ9k9GhcqfJbQwAgPlIdAGwrWaf9OyH0sFjodn/iUZtsMNeRJLEuCQN7jNJfr9fRWW7rQ7HNBW10v8ub9vY+8EoOS796UPJG+QQWABC793t0sr80O3/lQ3Sxn2h23+4OLUe8PmNN7n2loZm/41eox4oOR6a/QMA2u+jz435dkNl6WZprQOqTqe2Bfx+6e8fG8NWhkJTszHFQWGInjsAAMxBogv4Qt6KhXr5gRlWh4EAfLBD2hNgR7SfXCTdd5Xx37aoaZBeXNO2yewjXfEXNzOpHWw6HuPX+P3SP9dKVQG8cRXo9y8Zb/Ut2x54fABC70CZMY9GIIIpB/61Tjpu8lujVnBaPSBJq/MDf5Mr0Gugvkl64ZO2TWYPAAiv4grjba5ABNMWWLzeGR0gndgW+HSPMeRwIAK9Bhq9RluADpDOx7NBwL5IdAGwpeKK4IamSE00JpNNDWBy+V2HjQdpdlLfVKvjNaWqqD6qvcXb9OSSH2jXoU0anDVBmd1yrA7PFJ/uMcZND0Qw379kDFdy0KbDWAJO5W02HjgE2hEhmHKgrlH656dGgt0uoqEeKK2SXt8U+HbBXAMHyqQPdwR+LABA6DT7guuIEEw90OiVXrJZB8hoaAtU1Bpv3wcqmGugqEJ616bDWAJANIixOoBwKC0t1SOPPKIlS5aosLBQ3bp109VXX60HH3xQc+fO1XPPPaennnpKc+bMsTpUWOC9P9+u/DUvyefzyudt0h++myxJ+t6fj8vt9lgcHVqzdHN4e1a/sUWaMECKt0mp+bdl9+pvy+495Xe5w6/WD6/6vUURmcvbHNzDzWD5/NJrm6Q5s8J3TABntmZ3eIeT++yQlF8iDcoI3zHbw+n1gGTUzY1h7Fn99jZp8kCpQ3z4jgkAaN2GfaEbxr4lBYeNOaBGZoXvmO0RDW2Bt7cab16Hy3ufSVOzA+84icjHs0HA/mzyyDZ4mzdv1sUXX6ySkhIlJSVp6NChKioq0pNPPqndu3fr2DGjVTR69GhrAw2R5ucWyvfSP+X5yY/kvujCU5b5/X41z/uZ/Dt2KObpJ+Xq19eaIE12/MgerX/9tzr0+QpVlR2QJyZeHTqlK73/BA2Zfpuyhs48Zf1ZdzyrWXc8q7wVC5W3YqGu/dWH1gQeAoV5H2rxgzOVe9OjGnvJT1tc54mbXeo7+hJd8dOlYY4ueGXVUt6h8B6zvsmYo2XywPAeN1iXTLxT00deJ6+vSXuLt2nRhw+r9Hih4mITvlxn256V+sVfLj5tW29zo3y+Zr3zSOSOy7DlgFTdEN5j7jpsPFRP7xje47aXU8uBQAVaNziJE68Bv19aZcGbtqsL7JPocno9UFkX+DBF7dXULH26V5oxOLzHbS8nlgGBiPbzB5zMqraAXRJdTm8L1DYYyc5wavYZna0uHB7e47ZXNNaFPBs8VTReA4g+jk50lZaW6rLLLlNJSYnuuece3XvvvUpJSZEkPfLII1qwYIFiYmLkcrk0cuRIi6MNDfcts+Vbs1bNz/xZrrFj5OqW9uUy35JX5d+6Te7/uM0xSa7De9br5d+cK7cnVkNyb1XXXsPkbapTRUmB9m9bptjEFEc/zIwWHxdIVowYsSpfmjRAcrksOHiAeqVla0yO8frRhMEXa3i/XP34D7l6YvH39MubX5Ikjeg/Ta//5tSB5kuPF+kHT47TFVMi+w3XVQXWHHd1gXTNOGuOjeBRNzjPniPhfZvrhO2FxhA5nTqE/9iBcno9sGa3NXNmrc6Xpg+S3DZoCwCAkx0oM37CbWexdLRS6pYa/mMHyultgU/3Gp1Qwu3jAun8oZKHyWAiFvd/QHRydKJr7ty5Kiws1Jw5c/TYY4+dsmz+/Pl64YUXtGXLFvXr10+pqTZopQTBFRurmHn3yDv3x2p+/H8U89ADkiT/wUL5Fv5NrsGD5L7uGoujNM/aV+6Xt6FW3/rNZnXrM+q05TUVJRZEBbNtL7TmuIfKjQecnZOsOX57DOs7RbPG3KJ3N/xNV+bO1bC+U05bp9HboPv/drWG983Vt87/hQVRtk1Ng7T3qDXH3l5IosuOqBucZ5tF9YDPb7xRPCXbmuO3h5PqAcm6tsDRKulIpf3e7gUAp7GqHpCM4Yxn2PAREm0Bc1TUGs8Gene15vg4O+7/gOjk2P4HO3bs0KJFi5SWlqaHHnqoxXXGjh0rSRo16qtCb+XKlZo1a5YyMjIUHx+vzMxM3XDDDdqxw76zT7uyB8p94/Xyb9go3xtvyd/crOZHHpP8fnnm3SOXxzljzVaUFCghuWuLFZkkJXVKD3NEMFtDk/GAySrhHAPebLNn/Vput0d/fef/tbj8icXfU2NTvebdsDC8gQXIyu+gvEaqrrfu+AgOdYPzWFkOUA9Yz9ssFZVbd/xCG18DAOAUVpbFtAWs5/NzDaB13P8B0cmxb3S9+OKL8vl8mj17tpKTk1tcJzHRmD3y5ERXeXm5RowYobvuukvdu3dXYWGhHnroIU2ePFnbt29XZmZmWOI3m3v2TfJ9slbNf35W7t175N+ZL/edt8uVZc/zaU3H7gNUXrxTu9Yt0cDxV1sdTsTwNtaqrqrU6jBMcajcmmELTzhYZp8x2b+uV9pAzRx1o97f9A9t27NSI/pP+3LZK6ue1NodS/X03HVKiIvsMbkOWjBEySnHPyYN6WltDMFwUjkQKOoGg1OuAasfbNg5yeGUeqDkuOS1YNjCEw4ek8b1s+74wXJKGRCsaD9/wEn8fjq9BMspbYGyKmMebascLJNkwzf8o6Uu5P6vddFyDSA6OTbRtXz5cknSzJmtj7laWGi853xyouvyyy/X5Zdffsp648eP16BBg7R48WLdfffdIYg29FwxMYqZ9xN5f/gj+Za+IdfwYXJffaXVYZluwpW/0oHt7+qNJ65Rp/Rs9czJVY/+45U5ZIa69BpidXiWWbP4Xq1ZfK/VYZjiWE10H7+9bjr/l/pg84v667L/p8e+94EkafOuD/TsGwv04O1vKb1LX2sDbAOrvwOrjx8sJ5UDgaJuMDjlGqhrlBq81h3frmXACdQDJhy/+uzrRCKnlAHBivbzB5zE65OqLBxlwa71wAm0Bex//GBFS13I/V/rouUaQHRybKJr//79kqQ+ffq0uNzr9Wr16tWSTk10taRrV2Pg3ZiY4D6ucePGqaQksPFf/XFx0jO/D+p4rUpKkmJjJa9XrvHj5HKbN3JlTnaOXI2Npu3PE5uoqx4oCHi7jOzJuumBDdr45u+0b8tbylvxvPJWPC9J6jlomi68a6E6du/f4rZuT6xi4hKDjjknO1vNTXVBb3+yYM+/NcNn3qnside1uOyV315gyjHMPP8z6Tv+Jo279tEWl/3kIin1LF9hasJX/73vqtbXq6yTHn/79N+/9vob+vkNd7Ux2uDFxSTqT3MCvwZGDZihdx9t/Z23Pj2G6J1Hvpqxt+TYPj3w9+t1x6WPatSAGcGE+qXsnGw1ekN/DYy7/r/Vd2zL1/PZroG2fv9S69fAL391r3at/ksbow1etJcDZp5/e+qGQJhdDtrtGghXPZCQmq5Lf7m+1eVmlQOtlQHHK2uUmTmojdEGj3qgdVmjrtDEb7XcTg5HW+Dd9z/QvbNvaWO0wbNbGSBFdjlox/MH0LLYhFRdcX9eq8tD3Rbw+hSW0X5oC7QuY8gsTb1tYYvLwtEWWP3xGj347WvbFmw70BYI7jNwyrNBiWsA0cHn+2q4jtzcXG3atCmo/Tg20VVTY3SvqKtr+Q9r0aJFKi0tVUpKivr1O33skebmZvl8Pu3fv18///nPlZ6eruuvvz6oWEpKSnTo0KHANkqIV2xQR2uZ3+9X8+/+W/I2Sb2z5HvhJbnPnS5XzwxT9l9UXCTVN5iyL0mKiQ/+Nfm0rBG68K6FkqTK0v06tOMjbf/wWRXtXKnXH79CNz2wQZ6YuNO2Gzx1tgZPnR30cYuKi+RtqA16+5O15/xb0ik9W72HzzJ1n19n5vmfSWr/I60vS5Q6tfGjc7vbvu7JaqorA/97DkJCbOiHiqhvrNW9C6/U5KGX68qpc9q9v+KiItU3hf4aGFx1vNVlbb0Ggv3+Jan82NGwXAPRXg6Yff7B1g2BMLsctNs1EK56ILHqzB1rQl0OeL2N1AOtCFc9kNjzcKvLwtEWqK2poh5oRSSXg3Y8fwAti4k/80SNoW4LNHubaAu0IlxtgZiurXcmD0dboL6uhrZAKyKlLeCEZ4MS1wCiz+HDrd/rnY1jE13p6ekqLy/Xxo0bNXny5FOWFRcXa968eZKkkSNHyuVynbb9ueee++UbXwMHDtTy5cvVrVu3oGMJlD8uTkeDOlrLfK/+W/4tW+X+zrflnjxJ3h/8UM2/+295Hnu4xfMPVM+Mnqa/0WWG1LQ+Sp12qwbn3qJ//dc0FeevVsnuT9VrUK4p+z9Zz4yepr7JYDdmnv+ZdIhtvWdaZRsOn5pgNGZ9PqnyDMNdtLYvj69evXr1OvuB2ikuJvTXwMpti7WneIsOlebrwy2LTlv+l5/mqXvn3m3eX0bPnmHpvRfjb/2LO9s10Nbv/0z7Soz1heUaiPZyIJTnH6q6wexy0G7XQLjqAbcnTr5mr9yelpuxZpUDre2nqa6CeqAV4aoHkuJbXxaOtoCruZZ6oBWUg+EpB4Go53LJ21irmFbmkQp1W6Cx9hhtgVaEqy2QnND6c6xwtAVEW6BVkdgWsOuzQYlrANHB7/fL7zee92ZkBP9SjmMTXbNmzdKOHTv08MMP64ILLlBOTo4kad26dbrllltUWmpMvDd69OgWt//LX/6iiooK7d27V48++qguvPBCrV69Wr17t72CP2H9+taH12lNTbNXnZe/G/B2LfEfOiTfcwvlGpQj9/XXyuXxyH3zbPme/6t8r/5bnquuaPcx8gvyldTKA6dgNHilBae3sYLmcrmUPmCiivNXq6Y8NL1u8gsKFG/SR2D2+YeDmed/JsfrpHuXtLyspSEFvu6+q4weW5X10n2vBH78X9/zHU38w3cC3zBAzY3SB0+G9hgXjL1FF4w1b+ilgvwCedr3QkybbNov/XVVy8vOdg209/uXpNcX/VHdUoLbNhDRXg6E4/zNrhvMLgftdg2Eqx6QpEfekIoqWl4W6nJg2ph++ssX87yGEvVA6+oapZ//q+Vl4WgL/PT7N2ra/9wY+IYBslsZIFEOhrMcBKLdE+9Ie0tbXhbqtsDYwT30DG2BFoWrLdDUbNQPvhb6wYajLfD9Wy/T4ocvC3zDANmtHpQiuy1gt2eDEtcAEAjzJmmKMPPnz1fXrl118OBBDRs2TCNGjFB2drYmTJig/v3767zzzpPU+vxcgwYN0sSJE3XjjTfq/fffV1VVlR555JFwnoIp/D6fmh99XPL55Jn3E7k8HkkyEl452fI9t1D+omKLozTP/m3vytd8+gz13sY6Hdi2TJLUpdfQcIcFE3VM/Go8bStkdbHu2DBkWvgdJMRKacnWHR/BoW5wHivLASuPDUNinJQWhg4HreEaAADr0RaIbrEeKb2TdcfnuUBk4/4PiE6Oza9mZmZq5cqVmjdvnj766CPt27dPQ4cO1TPPPKM77rhDAwYMkNR6outknTp10sCBA7Vr165Qh20638tL5M/bIfft35HrpLfRXB6PPD/9ielDGFpt5T9+rLqqMvUfc7nSskYoJr6DqsoOaufHL6iiJF9Dcm9VWtYIq8NEOw3oYbzVE25J8VKPjuE/Lk6Vlmz0vquwYMjnAd0lBxSVUYe6wXkG9pA+3WPdsWG9gd2l0qrwHzc+RurVOfzHBQCcamAPaWW+dceG9QZ2l4rOPF1bSMR6pN5dw39ctB33f0B0cmyiS5KGDBmipUuXnvb76upq7du3T263W8OHDz/rfo4cOaKdO3dq4sSJoQgzZPwHDsj31/+Ta8hgua+5+rTlrr59TB/C0GrTZj+uPRteU1H+Ku1at1gNtRWK79BRaVkjNe6yBRo67TarQ4QJpmRbk+iaNEDyOPY9WPtwuaTJA6W3tob/2FOzw39MtB91g/OM7i29ukGqNW960Dbp2Vnqw4ONiDAlW1qzO/zHndBfinP0HRQA2MOwXsZIH2ebd9ds3VJIdEWKKdnSip3hP+45fYy3yxG5uP8DolNU3qZ99tln8vv9ysnJUYcOp05eevPNN2vgwIEaPXq0OnXqpIKCAv33f/+3YmJi9OMf/9iiiIPj6t1bsW+8dsZ1PDfdIM9NN4QpotDrM+JC9RlxodVhRIzMoTN0999bGLT6JGdbHokGdpd6pEqHK8N3TJeMhjQiw6SB0jvbWh6TPVS6JkuDg58T0zJOLQcCEe11gxOvgbgYI+Hw4efhPW5uNm91RoreXY2fA2XhPe7UnPAezwxOLAMCEe3nDzhVjMe4J1i2PbzHnZotuWkLRIT0jkbScdfh8B43l7ZAxIv2+7+WRNs1gOgUle8mbNu2TVLLwxZOmjRJb775pr7zne/o4osv1qOPPqpp06Zp8+bNGjhwYLhDBdACl0u6MMxvmY/rZyQ6EBk6JhpvdYXTrGGSOyprTSAynTtYYZ3kuEuSNLZf+I6Hs7vw7AMzmGpUlvFQDQAQGablSB3C+GZNaqI0cUD4joezC3dbYHAGwxYCQKSKyje6zpTomjNnjubMmRPukAAEaEwfY/jC7YWhP1ZqonTV2NAfJ9QKjxbo0UXf1vGaUiUldNS8Gxaqb/owq8MK2mXnSHlFUnlN6I81KMMYuhJA5OicJF0+RvrXp+E53k2TwptYCxUn1QXDM6WxfaUN+0J/rKR46drxoT8OAKDtUhKlq8dJf/84PMe7YWJkDFnX1rr8rU//opc++K38Pp9GDzxPc6/+g2I8sdq0a7n+8ubPVNdQLZfLpYmDL9F3v/lbub/o1ffSBw/r3fV/VYwnTnGxCfrBFU9qcO8JKj1epMf++R0dLt+nWE+8eqVl6+5r/qhOyd3C/RF8KSfd6AD5ya7QHysh1rgGAACRKSr7pp8p0QXAHlwu6foJxoOnQFTWSRW1xn/b6oYJUocAjxOJnlh8l7458U4tXJCvG2Yu0KOLbrM6pHZJiDUePAcyckgw339CrHTjRIYrAyLRlIHSoPTAtgmmHMjNkbIDPE6kclpdcPU4o0NKIIK5Bq4ZZzxQBQBElrF9jY4PgQimHpjQ35gXLBK0pS4vPrZXC9/5tf77+yv115/tUnn1Yb2x5k+SpJTEzvrl7Jf0l3l5+sPdG/TZ/o/17oa/SZJ2Hdqs1z/+g56e+6me+clmXTFljp5+1egM7nF7dPOsX+v5+Tv1p3u2KqNrf/1p6bywnXdrrhhjdIAKRDDXwJVjAz8OACB8HNAvNXDLly+3OgQAJkhNlO6YIf3hfanR27ZtHn87sGNcMUYaFuCNUyQqrz6i/ML1+u0dyyRJ00Zco6dfmaNDpbvUK82+w7LmpEvXjJdeXte29QP9/mM90u3nckMDRCqXS/p2rvTUe1JxRdu2CbQcGNJTunJMwKFFJCfWBUnx0p0zpKffk+qb2rZNoNfARSOkMX0DjQwAEA4ul3TzFOn370kHj7Vtm0DrgYE9pOsmBB5bKLS1Ll+59WVNHnq5uqQaPXUunfQ9vbj8QV0x9Qca2OucL9eLi03QgJ6jdbh8nyTJ5XLJ62tSfWONEuOTVV1fobSOxg1x55Qe6pzS48ttB/eeqNdWPx3qUz6rhFjprpnSU+9KNQ1t2ybQa+C8IdLE/oHHBgAIn6h8owuAc/RNk74302jcmu3yc6SZQ8zfrxWOVhxUl9QMeTxG/waXy6XunXvrSMUBiyNrv9yc0AwnFRdjJFIH9jjrqgAs1CFe+sH5UmZn8/c9rJf0nWnGhPdO4NS6ILOL9J/nB/6Wd1tcNFL6RpjnBQUABCYhVvr+eca9odly0qU7zjU6wEWCttblRyoOqEfnPl/+O71L3xbr+2OVJVq59WVNHHKpJGlAz1G6ZtqPdctD/XTTA5lasuK/NefKp07brtnXrNdWP60pw64w8/SClt7RaA+mJpi/7/OGGsPmM8IHAEQ2El0AbK9/d+nHF0l9TLqxSUmQvjvdaNDCHnJzjF58nTqYs7/MLtKPv2Hc2AKIfMkJ0pwLjKEMzeB2GW/x/Md0I+mNyNe7q1FuD+huzv6S4o23BS8awYMtALCDDvFGp4fpg8zZn8slnT/UeGs4PgSdKiNBTX2lfv38Zbp+xnwNyhonyRjycNW2JVq4YJde/FWhrp7+Yz3w9xtO2c7v9+upJf+plMTOuir3bitCb1HPzsZzgUCHtW5NYpz0rclGB1jaAgAQ+bh1B+AIPVKluy+QPtopvbW17UMZnswlY4z3q8aFple4lbp1ytKxymI1N3vl8cTI7/frSPkBde/U2+rQTDOkp7TgEum1jdLa3ZI/iH3EeqQLhhs3tR66ggC2khArXT9RGtVb+uenUll1cPvJ6iLdOEnqFYI3xKzm9LogLUX6wSxpdb60dLPUEERbQJJG9zaGxU0JQa9wAEDoxMUYczeOypJeWisdrQpuPxmdjLmAe3c1NTxTtLUu796pt4rKdn/575Jj+05Zp7a+Sr949iJNGXaFrj33J1/+ftXWxeqXMUJpHXtKkr4x/jv6/as/VJO3UbExcZKk3782V0eOH9T9335Vbndk3TR1TpK+d560Zrf0701SXWNw+xmeKV03XupoUkdKAEDokegC4BhutzHU4KQB0rq90qp86Ujl2bfrECdNHCBNzTYekjlR5+TuGthrjN7b+Hd9Y/xtWrltsdI6Zdp2TpbWJMYZD6gvGC59sktas0uqbsM47WkpUm62NL6/85KcQLQZlCH94jIp75C0qkDaWXz2bdwuI0GWm228JezUXrvRUBe4XdK0QUZ5vmGvcQ20Zf62hFijLTAl2+g8AwCwrwE9pJ9fKn1ebNwT7ig6eyc4t8tIbuTmSNk9Irct0Na6fNqIa/SjP+Tq1gvuU+eUHlq65o+aMfpGSVJdQ7V+/uxFGjfoIs2e9atTtkvv2l/vrH9edQ3VSoxP1tq8pcrslvNVkuvVuSoq3aX7bnv1y99FGpdLmjzQmF9z0z7jGigsP/t28TFG+2FqtpHsBADYC4kuAI6TGGcMWTEtRyqtlg6WSYXHpGM1ktdnvKmTFG/02s/sbDRinTL/ypn86Jpn9Oii2/Ti8gfVISFV865/3uqQQqZrsnTpaOnikcYDzsJjxk9Vg9Tsk2LcRm+/zC7GdZCWYtzcAnAGj1sakWX8VNV/VQ8crjTe+HW5jIcZGZ2+qAu6GHVHNIiWuiAhVpqaYySuyqqN7//gMeP/vT7J4zKGucrsLGV1lXp2io62AABEC7dbGtrL+KmuNxIdB8ukkuNftQXiYqSMjkY9kNnZqBfsoLW6/Hf/ul2Th16uKcMuV0bX/vr2hffrR7+fKkkaNWCGLp10lyRpyaontPPgp6pvrNGqbUskSdNHXafZ5/9SucOvUv7BdfrBE+MUGxOvhLgk/fxbL0iStu9drVdXP6Ws7oP1wycnSpIyuvTTfbe9Eu6PoE3iY6RJA42OLMdqTm0LNDUbbYHEOKMdmNnFaAswZDUA2BdFOADHcrmkbinGz5i+Vkdjvazug/TkDz+xOoyw8ri/unEBEJ1SEr560IXoqwtcLqMzQ1qKNLqP1dEAAKyQnCANzjB+nKC1uvye65495d/fnHiHvjnxjtPWm33+LzX7/F+2uG+Xy6XvfvMhffebD522bHi/qXr30WAGiLeWy2V0hOyabLzBDwBwpsgaTBcAAAAAAAAAAABoIxJdAAAAAAAAAAAAsCUSXQAAAAAAAAAAALAlEl0AAAAAAAAAAACwJRJdAAAAAAAAAAAAsCWX3+/3Wx0ETuf3+1Xra7Y6jDbr4PbI5XKZtj+/X2q0z+lLkuI8klkfQbSfP4xrwNdkdRSBccdyDZgp2suBaD9/yX6fAfWAuagHYLcyQKIcpBwEYCbaArBbPSjRFoj285doD8E6JLoAAAAAAAAAAABgSwxdCAAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFsi0QUAAAAAAAAAAABbItEFAAAAAAAAAAAAWyLRBQAAAAAAAAAAAFuKsToAAACAr/P7pcZmq6MITJxHcrnM25/dPoNoP3/J/M8AAIBoFu1tgWg/f4nPINrPHwACQaILAABEnMZmacEiq6MIzMM3SPEmtqzs9hlE+/lL5n8GAABEs2hvC0T7+Ut8BtF+/gAQCIYuBAAAAAAAAAAAgC2R6AIAAAAAAAAAAIAtkegCAAAAAAAAAACALZHoAgAAAAAAAAAAgC2R6AIAAAAAAAAAAIAtkegCAAAAAAAAAACALZHoAgAAAAAAAAAAgC2R6AIAAAAAAAAAAIAtkegCAAAAAAAAAACALZHoAgAAAAAAAAAAgC2R6AIAAIAkKW/FQr38wAyrwwAAAAAsQXsYAOyJRBcAAAAAAAAAAABsKcbqAAAAAGCt9/58u/LXvCSfzyuft0l/+G6yJOl7fz4ut9tjcXQAAABAaNEeBgB7i4pEV2lpqR555BEtWbJEhYWF6tatm66++mo9+OCDmjt3rp577jk99dRTmjNnjtWhhkRRubS6QNp9RKpvkhJipYHdpak5UkYnq6MDAIRadb20Zre05YDx/zEeqUdHacpAaXCG5Hbw+92FeR9q8YMzlXvToxp7yU9bXOeJm13qO/oSXfHTpWGOLnSOH9mj9a//Voc+X6GqsgPyxMSrQ6d0pfefoCHTb1PW0JmnrD/rjmc1645nlbdiofJWLNS1v/rQmsBDIFqvgZP5/dKuw0Z78FC51NQsdYiXRmRKkwdKnTpYHSEAINSOVkkfF0ifF0l1TVJcjNQ3TcrNkXp3tTq60KItYAi0fWh3tIe/wt+AoahcWlUg7eH5KOBIjk90bd68WRdffLFKSkqUlJSkoUOHqqioSE8++aR2796tY8eOSZJGjx5tbaAhUNMg/d9q6fPi05eVHDcK98EZ0i1TpaT48McHAAgtn196a4u0fIfU7Dt12dEqaXuhlJYs3Zrr/Acc0eTwnvV6+Tfnyu2J1ZDcW9W11zB5m+pUUVKg/duWKTYxxXEPMtC6w5XSwpVSccWpv6+oNW72391uJLuuHid5HJz0BoBo1eCVXlojbdp/+rIjldKne6R+3aTbcqWOdHxwrGhrH0bb+eLM2vJ8dGhP6eYpRmcwAPbk6ERXaWmpLrvsMpWUlOiee+7Rvffeq5SUFEnSI488ogULFigmJkYul0sjR460OFpz1TZIT71rFNhn8nmxsd7cCyjMAcBJ/H7pn2uNN7nOpLTaqAf+83zjIQfsb+0r98vbUKtv/WazuvUZddrymooSC6KCFUqOS08uk2obW1/H5zfe9DpeJ/3HNGe/4QkA0abRK/3xfWlv6ZnX23tU+p93pLu/wVu+ThVt7cNoO1+0rqaNz0fziqSn3pN+eIHUIS48sQEwl6NvZefOnavCwkLNmTNHjz322JdJLkmaP3++Ro0aJa/Xq759+yo1NdXCSM330tqzF+InlBw31gcAOMcnu86e5DqhqVl69iNj+AbYX0VJgRKSu7Z4Uy9JSZ3SwxwRrNDsk/784ZmTXCfbXii9+1lIQwIAhNmrG8+e5DqhvFb660qjsxScJ9rah9F2vmjdi2va/ny0uEJatCak4QAIIccmunbs2KFFixYpLS1NDz30UIvrjB07VpI0atSpFd/evXt1+eWXKyUlRZ07d9att96qsrKykMdsltIqadvBwLbZdtDYDgBgf36/9OHngW1T0yBt2BuaeCKBt7FWdVWlLf44TcfuA1RfXaZd65ZYHUpEiaZrQDISV2XVgW2zMl/yNocmHgBAeNU0GMMSBmJvqXTAPo8+AhZtbYGTRVv7MNrOt62i7W/gxHD9gdh6MPA2NIDI4NihC1988UX5fD7Nnj1bycnJLa6TmJgo6dREV1VVlWbOnKkuXbroxRdfVF1dnebPn69LL71Uq1evljuA8Vz8fr9qa2slSR06dJDL5WrHGbXdxwVSoJ2w/F9sd/mYUEQEAAingsPGnAuBWpUvTcmWwlRdhdWaxfdqzeJ7rQ4jLCZc+Ssd2P6u3njiGnVKz1bPnFz16D9emUNmqEuvIVaHZ5lougYkYzjCQFXXGzf3Y/qaHg4AIMw+3RNc54VV+VKfNPPjiQTR1hY4WbS1D6PtfNsq2v4GPg6iPXzi+ehl55geDoBWmJVDcWyia/ny5ZKkmTNbn1yysNBI65+c6PrTn/6kQ4cOacWKFerdu7ckKTMzU1OmTNG///1vXXnllW2Ooba29sskW0ZGRkBJsvaY8b3FSus3MeDtFr2xRv95+bUhiAgAEE6DZ87R8It+FvB2xcelvv2z1dxUF4KoAuOJTdRVDwRxZ9KK4TPvVPbE61pc9spvLzDlGDnZ5n52wX4GGdmTddMDG7Txzd9p35a3lLfieeWteF6S1HPQNF1410J17N6/xW3dnljFxCUGFW+knH9r7HgNtMeV/5WvmLjAJ1r59cPPasvr95kfEAAgrCbd/IwyR1wS8HbLP92tBdefG4KIAhftbQEzz7897cNAREp70Kr2sBS514Bkv7+B9prx/VeU1nd8wNu99Pon+v5lLX9OAMzn8/lUXFwsSRo9erQ2bdoU1H4cm+jav3+/JKlPnz4tLvd6vVq9erWkUxNdS5cuVW5u7pdJLkmaPHmy+vfvr9dffz2gRNfJTnxZ4eBzxQa1nd8dp0OHDpkcDQAg3Po0+oLetvRYpWorj5gYTXBi4s2dCb1TerZ6D59l6j6/rqi4SN6GWtP2157PIC1rhC68a6EkqbJ0vw7t+EjbP3xWRTtX6vXHr9BND2yQJ+b0WZYHT52twVNnB3XMSDr/ltjxGmiPYJJcktToddEeBAAH8PqC62jr8iRETD0Q7W0Bs88/2PZhICKpPWhFe1iK7GvAbn8D7eUP8vmozxUbMeUgEG0OHz4c9LaOTXTV1NRIkurqWu5FsGjRIpWWliolJUX9+vX78vd5eXm67rrTs/bDhg1TXl5e0PGE840uV3ND0Nv16tXL5GgAAOGW0I7avWvnFHVOCe6GwEye2OB7UVqlZ0ZP03uwmiE1rY9Sp92qwbm36F//NU3F+atVsvtT9RqUa8r+T4jU8w8nsz+D9miqr1JsQkrA28V6mmkPAoADeNQU1HY+b23E1APR3hYI5fmHqn0Yqe3BcLWHJftcA6ESSe1hNdcHtZnLx/NRIJxOfqOrR48eQe/HsYmu9PR0lZeXa+PGjZo8efIpy4qLizVv3jxJ0siRI08Z97G8vFydOnU6bX9dunTRzp07g46noKBASUlJQW8fiGXbpTe3BL7dbVdP1j/+X4CzNAIAIs7BY9Lv3gp8u/7dpAP7dpkfUBAavNKCRVZHEZj8ggLFm9iyMvszcLlcSh8wUcX5q1VTbn4PxUg//3Aw+zNoj+dWGPNtBep3/+9ODfnjneYHBAAIq092SYvWBr7dpdOy9dyPI+O5QLS3BcJx/ma3DyO9PRjq9rBkv2vAbJHUHn5nm/TW1sC3+49rp+qFeyOjHASiQU1NzZfTP61atSro/YTnFSMLzJplvIr78MMPKz8//8vfr1u3TjNnzlRpaakkY9xHp5k8QPIE+M163NKkgaGJBwAQXlldpD5dA98uN8f8WBB++7e9K1+z97TfexvrdGDbMklSl15Dwx0WwiyYv+euydKgDPNjAQCE39i+UkIQL+lPpT3oSNHWPoy280XLJg+U3K6zr3cyj1uaNCA08QAIrQjJsZtv/vz5euGFF3Tw4EENGzZMgwcPVn19vXbt2qWLL75Yffv21TvvvHPK/FyS1LlzZ1VUVJy2v2PHjqlLly5hir59UhKNQnl1APNVThogpSSELiYAQHjNGib9ZUXb1++WIo3MCl08CJ+V//ix6qrK1H/M5UrLGqGY+A6qKjuonR+/oIqSfA3JvVVpWSOsDhMhlt3DSHjvL2v7NrOGBf4wAAAQmeJipBmDpbe3tX2bkVlSj9TQxQTrRFv7MNrOFy1L/eL56McBDFoyeaCUzPNRwJYcm+jKzMzUypUrNW/ePH300Ufat2+fhg4dqmeeeUZ33HGHBgww0vNfT3QNGTKkxbm48vLyNH369LDEboarxkql1dLO4rOvOyjDWB8A4BwjsqRLR0tLN5993Y6J0l0zpRhPqKNCOEyb/bj2bHhNRfmrtGvdYjXUVii+Q0elZY3UuMsWaOi026wOEWHgcknfPVd66l3paNXZ158xmN6rAOA0F46QjlRKG/effd3eXaVvTT77erCnaGsfRtv5onVXj5PKqqWdJWdfd3CGdOWY0McEIDRcfr/fb3UQ4VZdXa3U1FS5XC5VVVWpQ4cOXy577LHH9Itf/EJ79uxRZmamJGnt2rWaNGmSlixZoquuuqrNxzl5fMnq6uqwzdF1grdZen2z9EmB1Nh8+vI4jzQ5W7psNA83AcCpPt1jzNtYUdvy8sEZ0g0Tpc7hraLOyo7j0T98gyJ6ToJQi/bzl8z/DMxQXS/961Npa6HUUqs/OV66YLg0fZCRHAMAOIvPb8xT89HnUn3T6cs9bmlcP+NhcKTVYdHeFoj285f4DKL9/M3ibZb+vcmYu7DpDM9HLz8n8KlgALSfWTmUCCt6wuOzzz6T3+9XTk7OKUkuSbrzzjv11FNP6YorrtD999+v+vp6zZ8/XxMmTNAVV1xhUcTBifEYb2p9Y4S0bo+0+4iUd+j/s3fn8VGW9/7/35N9ZwsQIOwkQFhlB4OC4lb3rWpRa1uX9tTit4vY9rRH/R3rXk+r1nOsbbXntFqqaFtxV0QWBdlFQBKWQEISICGQfZ35/XGJBJiQmcnMfc8983o+HvNguZfruieT+/7M9bkWqdVt5ur+jyuklAS7awkACKVpw8waDVv3S5v3mVer20xnc/fXzJSFACJXWpL0rbOkqjrz5X7pNnMPiI+Vrp8uTRhEhycAiGQxLumi8dI5edKGIml76fF2gcQ46ZeXM00XgMgWF2uS+ReON+2jr28098C4GOnSM8x35mTaRwHHi8o89ZYtZpLqk6ctlKSMjAwtXbpU/fr10/XXX69bb71Vs2bN0pIlSxQT48y3KyVBOnuU9O2zpNRE83+JcSS5ACBaxMaYNRduOvP4cyA5niQXEE16pEpfm3D8HpCSIE0eSpILAKJFYpxZe6Z9u0BSPEkuANHjWPvosXtgaqL5N0kuIDJE5Yiu0yW6JGn48OFasmSJlVUCAAAAAAAAAACAn5w5RKmLOkt0AQAAAAAAAAAAIPxF5YiupUuX2l0FAAAAAAAAAAAAdFFUjugCAAAAAAAAAACA85HoAgAAAAAAAAAAgCOR6AIAAAAAAAAAAIAjkegCAAAAAAAAAACAI5HoAgAAAAAAAAAAgCOR6AIAAAAAAAAAAIAjkegCAAAAAAAAAACAI5HoAgAAAAAAAAAAgCOR6AIAAAAAAAAAAIAjkegCAAAAAAAAAACAI8XZXQEAAICTJcRKj1xndy38kxAb/PM56T2I9uuXgv8eAAAQzaI9Foj26z92vmh+D6L9+gHAHyS6AABA2HG5pMQoj1Ki/T2I9usHACDaRXssEO3XL/EeRPv1A4A/mLoQAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACOFGd3BQAAAE7m8UjNbXbXwj8JsZLLFbzzOe09iPbrl4L/HgAAEM2iPRaI9uuXeA8AAL4j0QUAAMJOc5t0zyK7a+GfR66TEoMYWTntPYj265eC/x4AABDNoj0WiPbrl3gPAAC+Y+pCAAAAAAAAAAAAOBKJLgAAAAAAAAAAADgSiS4AAAAAAAAAAAA4EokuAAAAAAAAAAAAOBLLI0aJo/VSdYPU2mb+7fbYWx8AgLUaW6SKmuPPgTa35HZLMXR5AaKCxyNV1kqtbvPvNrdU3ySlJNpbLwCAdWobpar6du0CbvN8cLnsrRcAWMHjMW2jbe3i4aMNUrdke+sFIDhIdEWo+mZp7W5pR5lUcliqbjxxe02j9B+Lpeye0sh+0tRhUkqCPXUFAARfm1vaul/avE/aVykdqjlxe22T9LOXpQE9pKG9pRnDpd4Z9tQVQGhU1Umrd0m7D0rFh03C+5jaJunnr0i90qSBPaVx2dKEQVJcrH31BQAEV1OrtKHIxIQlh6Uj9Sdur2mSfvFlu0BOXxMPpiXZUlUACIn27aPFh0176DG1TdK9r0oZSeY+OKq/NGUo7aOAU5HoijCVtdL7W6X1e6TmttPvW90obSs1rzc2SZOGSOeNNQ0eAABnam6Vln0hrSowvdNOp6lV2n3IvD7YJo3qJ52bJ+VkWVNXAKGxt8LEg5/vNz1XT6ey1rw27ZNeWy/NGCGdk8cXfABwsqMN0gdbpU93n9jJwZu6JtMAvKNMeuszaeIg0y6Q1c2augJAKFTUfNk+WiS1+NE+umSjNHmoNG8M7aOA05DoihBuj/RxofSvjaaR01/NbabH74a90mVnSLNypBimLwAAR9l9UHpxtQnqA/FFmXnNHCFdPklKig9u/QCEVnOraaRc9kXnCS5vaptMg8Da3dJ106W8AcGvIwAgdDwe06j76jozisFfbW5z/KZ90oXjTMeHWKa5BuAgbo/p9Pn6psDbRz/ZaUbDHmsfZXpXwBlIdEWAhmbphRXSjvKun6u5VXplrbSlWPrWWTRyAoATeDymcfu9z6VgLMH4yU5pe6l02xwztSGA8FdRI/1+mXSwuuvnOtpgzpWfK101mbX8AMAJWtqkv35sklRd1eaW3tgsfV4i3Xq2lM76NQAcoKFZen6FVBCE9tGmVunltdKWEumW2bSPAk7A11aHq2+WnvkgOEmu9naUS797P7BeYAAA63g8ptfuu0FKch1zpF566j2zvheA8HbgqPTku8FJcrW3skD6v48ltzu45wUABFdzq/T7D4OT5Gpvb6X05HvS0frO9wUAO9U3mXbMYCS52vuizJy3gfZRIOyR6HKw1jbpuQ/NYoqhUHxYem6ZKQcAEJ7e+kxaURCacze2SP+zVDoQ5MZzAMFztF7676VmbYFQ2LjXjPYHAIQnt0f680qp8EBozn+oxjxnOlvrCwDs0tpmZiMoqQrN+WkfBZyBRJeDvbNF2lPh3zE/ulC670rzpy/2HDKjBAAA4WfXQTNdoT/8fQ7UN5tpcNoY0REVti1/Qa88MMfuasBHHo/0tzVmBKav/L0HSNLHO6XPiv2vHwAg9FYWSFv3+3eMv8+C8qPSPzf4XzcAsMLbW6QiP9pHA4mHdx+S3tvqf90AWIdEl0MVV0ofbPP/uIxkqXuK+dNX728N3agxAEBgmlqllz7xf7rCQJ4D+yqlZdv9LAhAyH2626yn549A7gGS9PdPpdoQjRoDAASmokZastH/4wJ5Fnyy00zhBQDhZF8A7aOBxsPvfS6V0D4KhK2oSHRVVFRo4cKFGjFihJKSkjRw4EDdddddqqur03e+8x25XC49/fTTdlfTL4vXmSkKrOD2SIsdPmVNbaP0caHp5fHu59KGIrNYL4Do4PFIOw9IH2w1U/0t2y6VHbG7Vl3z4Xapota68t76TKppsK48WOv9527VM99J09Lnv6vSHSv0zHfS9Mx30uR287AMV02t1vaur22U3v7MuvJCoaJG+ugLcz97f6tJEloVTwOwX5vbjE5973NzP1tZ4Py1p/65QWq28FH9ylrumwDCy+K15vu+Fdwe0x7rZLWN0qov20ffo30UESbO7gqE2qZNm3TRRRepvLxcqampysvLU2lpqZ588knt2rVLhw+bVPzEiRPtragfiiv9G5IbDEUVZlTXwJ7WlttVh2rMFI+b9kqtJ027lZoozRgunTdWSoq3p34AQsvjkdbskpZ9YaZcOdnwPtK8MdLo/tbXrSva3CZ5b6VWt7R6l7lnOknJtmVa/OBc5d/wmCZf/BOv+/z2RpeGTLxYl/9kicW1C52jB3dr3esPa/8Xy1VTuU+xcYlK6Z6lrGHTNPqsWzQwb+4J+8+77Q+ad9sftG35C9q2/AVd84tl9lQ8BCL1M7ChyEwtaqW1e6RLznBe3LT7oOno5G0kQmaalD9SOitXiomKLoBA9Gltk97fJn1SKB09qdPOq+ukcQOlC8ZK/XvYU79AHa6VPvdzysKuqqiRdpQ5L3aO1FjAX/7Gh5GEz0Bk2lcp7a20tsw9h8yormyntY9Wm/bRjftOXZaA9lFEiohOdFVUVOjSSy9VeXm5fvzjH+vee+9Venq6JOnRRx/VPffco7i4OLlcLo0fP97m2vpulcWNm1+VWyBdP8OesgOxt0J69sOOG4Hqmszw5u1l0vfOkdKTrK0fgNBye6S/rzHJmY7sOmgaQK+aIs0eaV3dumpLiVRtw+iqVYXSuXk0Boe7A7vX6ZVfna2Y2HiNzr9ZvQaMUWtLg46UF2rvlncVn5we0Q0Z0cDjMSMRrNbUKq3bI+XnWl92oNYXmXUGOxqBUFEr/WO9eRbcfKYUF2tp9QCEWGOL9NwyE/N54/ZIm/eZEZ7fOUsa2c/S6nXJJzutG8XQ3soC5yW6QHyIyGRHPCyZ78XXTben7EAUVUi/96F9dEeZ9N1zpDTaR+FQEZ3oWrBggUpKSnTnnXfq8ccfP2HbwoUL9eKLL2rz5s0aOnSoMjIybKqlf9weadM+e8retE/6+nQpxmVP+f6orJV+v8y3ns6lVebLz4LzaNwAIsmbm0+f5DrGIzP9QFqSdMbgkFcrKDbttafcI/UmSB7Wx57y4Zs1r92v1qZ6feNXm9R78IRTttcdKbehVgimilppf5U9ZW/c65xEV0H56ZNc7X1WLL28VrrBQZ26AJyexyO9sKLjJFd7za3SH5dLd50vDXDIyK6NNrULbCuVmlqkRHr9OwrxISLNsY4Kdti0T/r6NMnlgPbRiprTJ7naK/myffQHtI/CoSK2T/b27du1aNEiZWZm6qGHHvK6z+TJkyVJEyYcf8gfS4xNmzZNiYmJcoXZXauixvRKs0Nji1RZY0/Z/lq6zfRI8NW+StPAASAy1DSYNaz8sWSTc9YcKLZxAVw7y4ZvjpQXKimtl9dGDElK7Z5lcY0QbMUWT9HSXslh59wr39jkX13X7JIOeJnmFoAzFR7wPmVpR5pbpXe3hK4+wVTfbNoG7ODx2NfZAoEjPkSkOVRtZhuwQ0Oz6WDvBB9s82+6872VZgYZwIkiNtH10ksvye12a/78+UpLS/O6T3JysqQTE107d+7U4sWLlZWVpalTp1pSV3/Y3cBod/m+aGwx0+r4y64hzwCC75Ndp8473ZnKWjNUP9zVN9kbVJc44DngTWtzvRpqKry+Ik23PsPVWFupnWtftbsqYSWSPgN2xmNNrfY1rvqjOMA1G+yaIhxA8K0K4PvdlhIzgj3c2R2POaFdwJtIigX8RXxoRPNnINLYfR+yu3xfNDRL62kfRRSJ2KkLly5dKkmaO7fjOYZLSkyKun2i66yzzlJZmWnpvO+++7Rq1aoQ1tJ/h2xuWDjogIaN7aWB9erYfcgsTtwtOfh1AmCtQKf227g3/NccsPs5YHf5gVq9+F6tXnyv3dWwxLQrfqF9n7+nN357tbpn5ah/br76Dpuq7NFz1HPAaLurZ5tI+gzY/Xt4qFrqE+azfgc61ffGvWbdRgDO1toWWI90t8fM9HFWmK/davtzgHjQcYgPjWj+DEQau+9Dh6rtLd8X20ql5jb/j9t10MySk077KBwmYhNde/eaVs7Bg70vuNLa2vpVEqt9oismJjSD3HJycoJy7rEX/lSj5t7pdduPLpQyOrkJZSQd//O+Kzver7pBeuLtU///N795Sre+84iPtbXH8Jm36IwrHgjo2Fmzz9PRcj/nOwMQdi7+93VKzvB/+o1/LHlPC6/9VghqFDyZQ2dozndf8brNiufAxs2fK/s7F/pY28DFxifrygeCN7Ri7NzblTP9Wq/bXnv4vKCUkZuTo7aWhqCcSwr8PeiXM1M3PLBeG978tYo2v6Vty5/XtuXPS5L6j5yt8+94Qd36DPN6bExsvOISAvtGEy7X3xEnfgY6kv+dvygrd47XbZ3dB3y9B0gd3we+fdsd2r/lDd8qa5PJ1zyuoVOv9/u4o3Wtys4eEvwKAbBUYlpvXfrLjQEd+8DDv9G29x7vfEcbjcj/jiZeer/XbVbEg//317/p/135Ex9rG7hojwWCef1diQ/9QTxoXTwY7cZd9HONnPNvXrdZEQ//+r9+q2+/+5iPtbXHiFnf1sTL/7+Ajp2ef66qD+wIco0A79zu41My5efna+PGwGK4iE101dXVSZIaGrw/XBYtWqSKigqlp6dr6NChIa/PsVFiXTXo6JEOt2UkS91TfDtPTIzv+7Z3tPqI9u/f7/+BFupR6cNqwx0oKy1WVVl4Xx+AzrU0NSqQpvr62uqwv8d5UjteKNqK50BzU6Ml71FcYgCVO43uWTkaNHZeUM95stKyUrU2BW++o668B5kDx+n8O16QJFVX7NX+7R/p82V/UOmOFXr9ict1wwPrFRuXcMpxo86cr1Fnzg+ozHC6fm+c+BnoSGN9x2X4eh8I9B4gSZUVh8L+Xpl7NLAFZNpam8P+2gB0LjE18HvxkaqKsL8PZB7ueM4sK+LB2hprYuZojwWCff2Bxof+IB60Lh6MdoOrj3S4zYp4uPpo+LeP9uxi++iR8vC+PkSmAwcOBHxsxCa6srKyVFVVpQ0bNmjmzJknbCsrK9Pdd98tSRo/frxcLlfI69OvX7+gjOhKiu94Re1qHzqMZCSZG7nbLVU3drxfR+dKjpcGDBjQeUE2im0xCzJ4PB6/fratzfVKT3IrJcyvD0Dn6g8XKaP3EL+Pa60tDft7XEZaYofbrHgOqK3BkvcoNt558yT079c/6D1YgyEjc7AyZt+sUfk36eX/nK2yglUq3/WpBozMD8r5jwnX67dSsN+DjsR4Ol5RurP7gK/3gNOdKz0lLuzvle76jjsFnE5txe6wvzYAPnC51FhzUEnpffw/tOlQ2N8HUpI6bluwIh5MiGkjHuxAMGOBUF5/qOJD4kHr4sFol3SaFm0r4uGkhAhuH22qU0aSR6lhfn2IHG63+6tBQn379g34PBGb6Jo3b562b9+uRx55ROedd55yc3MlSWvXrtVNN92kigqz0OTEiRMtqU9hYaFSU1O7fJ4dZdJ/L/W+zdtQ2pPdd6XprVDdKN33mv/l//evf6mR/X7p/4EW8nikh5ZIB6v9S2DOzkvR07tZcRGIBJv3Sc+v8O8Yl6S//OYHykz/QUjqFCxtbumeRVKr+9RtVjwHrrt0tl66L4BFL/zU1Gqu00kKCguVGMTIKtjvgcvlUtbw6SorWKW6quD3zgv367dCsN+Djry/VVqyyfu2zu4DXb0HSNLKd/+u1I5z7mGhrkm69zWzTo8/br9irP68MPT3OACh9+Zm6d3P/TsmPUlateRZxcWGpk7BUlolPfqm921WxIP/+fPvacpz3/P/QD9FeyxgxfUHOz4kHrQuHox220ulZz/0vs2KePjZ/7pXuVnhvd6b2yM99Lp0qMa/9tGzxqbq6T3BmzIU6ExdXZ3S0tIkSStXrgz4PKFZkCoMLFy4UL169VJxcbHGjBmjcePGKScnR9OmTdOwYcN0zjnnSDpxfS4nyO4Z3eX7wuWSZuf6f9yZOcGvCwB7jM32fwqC0f2lzPTQ1CeYYmOk/j3sK3+gA54D0W7vlvfkbms95f9bmxu0b8u7kqSeA/KsrhaCyM7fw56pCvskl2TqOMn7Ur0dSoqXJod+RnMAFpk5Qorxc/KWmSMU9kkuSerbTYq3sZ7Eg85DfIhIY/d9yAntozEuKT+A9tF82kfhUBHbxyA7O1srVqzQ3XffrY8++khFRUXKy8vTs88+q9tuu03Dhw+X5LxEV2qi1CdDOlhtfdl9MpzRsCFJs3JM745tpb7t/7UJznhIAfBNbIx085nSMx94H/l0sm7J0rXTQl+vYBnaW9pXaU/ZQ3rbUy58t+KvP1RDTaWGTbpMmQPHKS4xRTWVxdrx8Ys6Ul6g0fk3K3PgOLuriS4Y2Mvc59p8uL8F21AH3QMunyQVVfgWN7sk3TjLJLsARIYeqSa+W7TGt/2HZErzxoS2TsESGyMN6iXtCnz5lYClJkq9M6wvF11DfIhIk5Yk9U6XDtVYX3ZWNymla8vZWSY/V/qizLSR+uLiCfZ2rAW6ImITXZI0evRoLVmy5JT/r62tVVFRkWJiYjR27FgbatY1M0dI/9xgT7lOERsj3TJb+usnZgqz07lkonQuHZeAiDOsj3THOdKfPpIaWjrer3e6dMdc0xjiFDOGSx99YX25uVlSrzTry4V/Zs9/QrvX/1OlBSu1c+1iNdUfUWJKN2UOHK8pl96jvNm32F1FdFFKgjRxkLS+yPqyZzgoHkxNlL4/T3pumVRyuOP94mNN54ix2ZZVDYBFjn2HfflTM4VTR3KzpG/NlhIc1EIyc4Q9ia7pw/0fKQf7ER8iEs0cIf1ro/XlOikejo0xz7e/fCx9Vnz6fS+dKJ1D+ygczEFhXPBs3bpVHo9Hubm5Skk5dW6rV155RZK0bdu2E/49ZMgQTZkyxbqKdmDaMDPfeIufaw50RXysKddJEuKkW/Kl3YeklQXmht6+5/PZo8xwXHqjAZErp6/0y8ulT/dIqwpO7O01NFM6M9c0Fjthipr2+nWXhvexvnEjkGkP7JadN0d3/eU0LVtSp9udZvC48zV43Pl2VyNsROpn4Mwc6xNdfTOkEX2sLbOruiVLP7xA+rxEWlUoFZQf3+ZySV8bbxor0pPsqyOA0Jo5QhrVT/q4UPpkl1TbeHzb2GwT3+RmOS95M2GQ9Np6syahVVySZjmogfeYSI0F/BHt8SGfgch0rH3Ul1lcgiU+VprmsKmuE+JMsmv3QWlloRkQcKzzh0vSnNHm3k77KJwuKhNdW7ZskdTxtIXXXnut139/85vf1AsvvBDSuvkiNdF8IV+xw7oyZ4xwzrSF7blcpjF4eB+TGPz//iHVNEoZSdKVk+2uHQArpCRKc0ZJZ4+U7n3VLDibkSTddYHdNeuac/OsTXT1yZDGDLCuPACnN7S3ee05ZF2Z5+SZ2MppYmNMg/CEQWZR+wf+aeLB9ETpPOdN7gAgAD1SpYsnSheNl+597fh3wlvPtrtmgYuPNZ0339xsXZkTBjljTVsA0SEtybRXriywrsyZI0wbg9O4XNLwvubVvn00PclM9w1Eghi7K2CHzhJdHo/H6yscklzHXDzBumm2eqZKlzhrKTOv4mOP99JzYiMNgK5xuY7/7kfCPSBvgDR5iDVluVzSN2aaxmIA4cHlkq6fYeIbK4zs57zR/d4kxhEPAtEsJiay7gHnjLZuLZXUROlq+ye4AYATXDJR6nHqZF0h0SvNtMc6He2jiFRR2WTVWaLLCZLipRtm+H9cdYN0pN786avrZ0iJLMwNAGHnqimmN7I/AnkOzB1tFmgHEF76Zkhf8zOcDeQekBgnXT+dL8IAEG7iYqVvzPB/2sVAngVXT5HSk/0rBwBCLSnetFv6I5B7oET7KBDuonLqwqVLl9pdhaDIzTLDS/+5wfdjnnjbvzKumGTKAQCEn9RE6TtnS898YKbj8oW/z4G8/pHRaw2IVGePkvZXSev2+La/v/eA2Bjp22dZN5MAAMA/2T3NyPu/fOz7Mf4+C87NkyYN8e8YALDKyH7SZWdI/9ro2/7+3gMls/xJTl//jwNgnagc0RVJ5o42w3RD4dKJZkFCAED4Gpwp3THX9GQLtrz+0i2zmbIQCGcxLjPKPxRTmcbFSN+ebRoPAADha8pQM9IgFCNvQ9nmAADBck5e6O5Vl51hOpcBCG9ROaIr0swbY9bRemWtVN/c9fOlJEjXTKXHFgA4xbA+0oLzpL98IpVWdf18Lpc0Z5QZyRVn0fo/AAIXGyPNnyX17Sa9s0Vqc3f9nJnp0vyZ0tDeXT8XACD0Zgw3U1r/bY3/03F5kxBnZpCZNYKpawE4w7wxZhaCxUFsH712mnTG4K6fC0DokeiKEJOGSCP6Sn//VPq8JPDzjM2Wvj5NymDubQBwlP49pB9dIL2/VXr3c8ntCew8fTLM6BAatwFniXFJ54+Vxg6QXlwtlRwO7DwuSWd9mehO4JsCADhK3gDppxdLr62X1vo4pa03OX3NCLFeacGrGwBYYfKQL9tH10hb9wd+nvEDpWunsjYh4CR8fY0gGcnSrWdLeyuklYXSxiKp1YcevXExJlGWnysN6hXqWgIAQiUuVrpwvDRjhPRxofTJTqmm0bdjc/qa58DYbKYqBJzsWNL7izJpZYG0vVTyJe+dkiBNHy6dmWNGcwEAnCkl0YzynTtaWlVo1nD0ZS3XGJdp2M3PlYb3YRQXAOfqdqx9tFJaVSBt3Otb+2h8rBm9Rfso4EwkuiLQ4EzzumKStPugVHzYvGoazI09Lsb0SBjY07yG9ZFSE+2uNQAgWLqnSF+bYEZ37Dl0/DlQUSO1tJmGjOQEaUAPs4D50N5Sbxq2gYgRE2N69ecNkKrqpN2HpOJKaX+VVNcsub+MB3ulmXvAwF7SsN6M4AKASNK/h5ly69IzpF3H2gUqpaP1pl0gNkZKSzz+HBjem5ELACKHyyUNyTSvKyab+2DJl9+LqxvMVN+0jwKRha+zESw1URo30LwAANEnLlbKyTIvANGpR6o0OdVM4wIAiD5J8dKYAeYFANEoNdGMWB1P+ygQ0ZicCAAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACOFGd3BQAAAE6WECs9cp3dtfBPQmzwz+ek9yDar18K/nsAAEA0i/ZYINqv/9j5ov09AAD4hkQXAAAIOy6XlBjlUUq0vwfRfv0AAES7aI8Fov36Jd4DAIDvmLoQAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI4UZ3cFAADAqTweqbnN7lr4JyFWcrmCc65ov34AAIBoj4ei/foBAIDvSHQBABCGmtukexbZXQv/PHKdlBikyCLarx8AACDa46Fov34AAOA7pi4EAAAAAAAAAACAI5HoAgAAAAAAAAAAgCOR6AIAAAAAAAAAAIAjkegCAAAAAAAAAACAI5HoAgAAAAAAAAAAgCPF2V0BIFTa3FLRIWnfYanksHSgWqppNNtqG6VFa6SBPaUhmVL/HvbWFUBoHK2Xdh2Uir+8Dxy7B9Q0Sr//UBrYy9wHhveRkhPsrSsAIPiaW6WdB8wzoPiwVFnbLh5skl5bb54Dw3pLPdPsrSuA0DhYLe05JBVXSvuPnBgPvrBCyu4pDepl7gNxsbZWFQCAoGvfPlpcKR2soX0UkYlEFyJOTYP0yS7p40LpSL33fdo80ic7pU++/PfAnlJ+rnTGYCmB3wrA0TweqaBcWlUofV4iuT2n7uP2SNtKzUsyv/eTh5j7wAACOwBwvAPV0qoCae0eqaHZ+z5tbumjL8zfXZJG9jPPgbz+UgzzXgCO1tomfVYsrSyQdh/yvo/bI23aZ16SlJYkzRwuzcqReqRaV1cAAEKhukFavVP6eKfv7aODekln5tA+CmfiI4uI4XZLH+2Q3twstbT5d2zxYeml1ebY66ZLeQNCU0cAoXWoRnrpk44bNDrS3PplcLdTmjJEunKKlJoYkioCAEKoqUV6fZNp3PaHR9IXZeaV3UP6xkx6tAJOtfug9OJqqaLGv+NqG6X3tkofbJPOGyudN4YRXgAA53G7pWVfmDbOVrd/x+6rNK83N0vXz5BG9w9NHYFQINGFiFBRI/31Y2lPRdfOc7RB+v0yadow6eopUmJ8UKoHIMQ8HtOo+a+N/ie6T7auSCo4IF1P0hsAHGX3Qemvn5jpCbuipEr69dvSBWOleWOlGFdw6gcgtFrbTKJ7+RcmeR0ot0d6Z4u0pVi6cRZJbwCAc1TUSH/5WCoKQvvosx9K04dLV02mfRTOwKQccLzSKuk373Y9ydXep7ulZz6Q6pqCd04AoeHxmDVWFq/repLrmOoG6bmPpNW7gnM+AEBofVYs/e6Drie5jmlzS29+ZjpStfnZExaA9ZpbTez2UReTXO2VHpGefM8k0QEACHf7q6TfvNP1JFd7a3ZJzyyV6mkfhQOQ6IKjHThqGjVqG4N/7r2VpvdCY0vwzw0gODwe6R8bpOU7QnPuv62W1u0J/rkBAMGzbb/0worQJKTWF5nprb2t9wggPLS2SX9cLu0oC/65G1vMd8K9QWw0BAAg2MqPmg77tSFISO2tkJ5dZqYIB8IZiS44VnOr+UITylFX+yqllz8N3fkBdM36ItNzN5Re/MT0jAIAhJ/KWunPK0ObiFq3J/TPGgCBe31TaJJcxzS1Sn/8iNk+AADhqblV+kOIn1N7K6RX1obu/EAwsEYXHOutz6SD1f4d86MLpYxkMy3ZE2/7dsz6ImniIGncQL+rCCCEjjZIr67z75hA7gFuj0l2/ehCKZbuIQAQNtxfjrxtavXvuECeBW9uNus29s3wv54AQmf3QbMmlz8CuQdUN5qpsm+c5X8dAQAIpTc2m7W5/BHIs3DtHmnCIGlstv91BKxAkx0caV+ltGy7/8dlJEvdU8yf/vj7p86fwtDtlmoapcO1zr8WBKa1TTpSb17BWsvKTovXSvXN/h0T6D1gf5X0wTb/jgEAhNaaXVLhAf+PC+RZ0NImLVptprV1stY26eiXsUCznwlCRIamVqmqzjRsOX39uTa3mVrU31/LQOPBdXvMVKkAAISLogr/O3xItI/WNJp4iOkYI0tUjOiqqKjQo48+qldffVUlJSXq3bu3rrrqKj344INasGCB/vSnP+mpp57SnXfeaXdV4aOl24K3yLAvahqltbul2SMtLDRIjtRLHxdKq3eanojHjOwn5eeY3smMUolsxYelVQVmdOKxBFdcjHTGEPMZGNRLcrnsrKH/DlVLnxVbW+ZHX0jnjJbiYq0tt6tKti3T4gfnKv+GxzT54p943ee3N7o0ZOLFuvwnSyyuXehF+/UDkcrtMfGglXYfMo0JQ3tbW24wlFZJKwul9XuOj4CLjTGzFpyZY67JabEAfOf2SAXl0soCaev+4wnblARp+nDzGchMt7eOgdhSLB3yswd7Vy3dbr4/OU20x0PRfv0AIteH261tH61uMB0/8nMtLDRIquqkT3aaV0279tFR/cz15PWXYmgfdbSIT3Rt2rRJF110kcrLy5Wamqq8vDyVlpbqySef1K5du3T48GFJ0sSJE+2tKHxW3WB9A7ckrSo0Nz4nNQKs22N6OXrrrbmjzLwGZ0q3nS2lJVlfP4SW2y39Y4O0fMep21rdJnm7drc0Y7h07TRnJTxXFVpfZl2TtHmfNHmo9WUDAE5UWG59A7dkOo44KdHl9khvbPI+KrnNbTrBrC+SJg+RbpjhvM4c6Fxji/TCCukLL2tY1TebBrJl26UrJktnj7K+fl1hRzy484BUflTK6mZ92QAAtHe03nT6sNqqQtNJxknto5/uNlOee1vX94sy8xqSKd1K+6ijOahZ038VFRW69NJLVV5erh//+McqKyvThg0bVF5erkceeURvvPGG1q5dK5fLpfHjx9tdXfho7e7QLjjekfKjphevU6zfI/3l486nJNlbIT3zgfOHHuNEHo+0eJ33JNfJVu8yD3ynTMfkdpsgxQ6f7LKnXADAiVbbdD/euE9q8HPaXDu9vtG3qXfXF0n/97E9MTZCp7VNem6Z9yRXex6Z9aeWBTD1kV0qagKbujQYVu+0p1wAANr71Kb20bIj0t5K68sN1Lo9Zt31zt6rogrpmaW0jzpZRCe6FixYoJKSEt155516/PHHlZ5+fD6GhQsXasKECWptbdWQIUOUkcHK0k6xx8Zkk1MSXbWNZiSXr0qPmEXWETm2l/rXy3XtHmmzDT2BAnGg2v+1uYJlb4Xz17MAgEiw55A95ba5pZLD9pTtr10HzGgdX23eZzqUIXJ8uF3addD3/f+53kwP7QR23QMke7+PAgBwjJ1tlEU2Pof9UeNv+2iV9NZnoasPQitiE13bt2/XokWLlJmZqYceesjrPpMnT5YkTZgw4av/e+WVV3T11Vdr8ODBSklJ0ahRo/Tv//7vqq2ttaTe6Fyxjb0G7CzbH2t2manp/PHp7uNrNsD5Vhb4f8yqAI6xQ7GNDYwtbdJBhzQAnay1uV4NNRVeX9Eg2q8fiCQ1jWYNUrvY+Rzyx8oApnWzYyo4hEab2/+fp0fSxw4ZrWTn72FplXM7PkV7PBTt1w8gstj5LHRKPLx6p//P7DW7aB91qohdo+ull16S2+3W/PnzlZaW5nWf5ORkSScmuh5//HENGjRIDz74oLKzs7Vp0ybdf//9+uijj7R8+XLFsCqdreqapKMN9pW/v8q+sv0RyBfUxhZp416zXhOcrarOjOjyV+EBk8TpE+YDXEtt/j3cXyX1625vHQKxevG9Wr34XrurYZtov34gkoTDcyDc1TaaEVr+2ldpRqxl9wx+nWCtL0oDSwiv2SVdPCH812srPWJf2S1tZo1AJ67TFe3xULRfP4DIUdsoVdM+2qlPAmwf3bRXmk77qONEbKJr6dKlkqS5c+d2uE9JSYmkExNdr7/+unr3Pr7C9Nlnn63evXtr/vz5Wrlypc4666yA6pOTk0OSLAhSew7WRfes6nD7jy6UMpI7Pj4j6fif913Z8X7VDdITb5/6/0XF5crOnuJjbe3hionT1Q8VBXTs/Q8/oy1vPRjcCsFyvYfN0tl3/D2gYy++6psq++KDINcouCZf87iGTr3e67Zg3QOkju8DP17479r1yZ99rG3gYuOTdeUDwetaP3bu7cqZfq3Xba89fF5QysjNyVFbS3Ci7Wi/fgAdGzDuYs288Vmv2zp7Dkhdjwdff/M9/ey6b/lYW3v0yJ6oc3+wJKBjr7nxeyr57PUg1whWy5l9uyZc8h9+H1ffLI0aO1mNNTYtgOWjcxe8rR4DxnrdZkU8eP5Fl+nwvg0+1jZw0R4PRfv1A0BH0noN1YULV3S4PdTto7v3lio7e5qPtbWHKzZeVz+4J6Bj733oaX3+9sNBrhE64nYfH3aXn5+vjRs3BnSeiE107d27V5I0ePBgr9tbW1u1apVJmLRPdLVPch0zZYpJbOzfvz/g+pSVdbICMHzSvS3ltNszkqXup99FkhQT49t+J3N7uvY5sEJcQietO6dR39AU9teHzsX2PBrwsVVHa8L+M5DX0NjhtlDfAyTpaLU171FcYoAV7ED3rBwNGjsvqOc8WWlZqVqbgjOfWLRfP4COpQ7s+Dnn63NACvxZ0NzcEvbPSk/qkICPPVpdG/bXh871qwu8of1gRaVqKsL7M9B2mnmIrIgHKysPq5R40CviQeJBAKHXw+199rJjaB+V4hNTAz6W9lH7HDgQeGeriE101dXVSZIaGrwH+IsWLVJFRYXS09M1dOjQ057rww8/lCSNHj064Pr069ePEV1BkNzt9PNDdDZsNyPJ3MTdbqm647byjs/jbtaAAQNOX0gYaG2qU1wAN/R4V5Mjrg+nl57kkiR5PB65XC6/jk1LVNh/BhLjO76mYN0DTneu9NQkS96j2PjAk9Z26d+vf1B78DpNMK8fQMcy0jq+P/gyhUtX48G42PB/VqYlm+8dgcQCKQmesL8+dC4xNrDFJTxut3pmJCkjMbw/Ay51fH1WxIM9uqfLRTzoFfEg8SCA0Evufvo1J2gfNVqbGwIaEBDvcsb1RQq32/3VIKG+ffsGfJ6ITXRlZWWpqqpKGzZs0MyZM0/YVlZWprvvvluSNH78+NN++du/f79++ctf6sILL9TEiRMDrk9hYaFSUwPPJMNwu6Wfviw1d/C9xttw2vbuu9L0VKhulO57zf/yJ40ZpOe+nPIynL34ifTpbv+Pe+l3P1XvjJ8Gv0KwlNsjPfS6dKjGv4at7inS+uWvKjbMc/LLtkv/6GCmmFDfAyTp+f9+VCP6PhrYwX5oapXuWRTyYoKqoLBQiUGKLKL9+gF0rPyo9HAHs/J19hyQuv4s+OZ1X9MrD4d3POjxSI+9JZVW+RcLpCZKa977S9ivz4TO1TZK977m/wLsY7Jj9NtdX4SmUkH0l1XSuiLv26yIB9eueEvJCYEd649oj4ei/foBoCNtbumnfzfrRnoT6mfhlLFD9AcHtI/+9RNpbQDto4v++2fKTP9Z8CsEr+rq6pSWZkYprly5MuDzhHlzZuDmzTPD0R955BEVFBR89f9r167V3LlzVVFRIUmnTV7V1tbq8ssvV0JCgv70pz+FtL7wTUyMNKCHfeUPdMjC3Pm5/h8zsp/U+/QdQuAQMS5pVo7/x80aobBPckn2/x5mO+Q+AACRqk+6lGBjI+LAXvaV7SuXS8oPIBaYMVwkuSJEWpJ0xiD/jwvke4Qdsm38PeydLkuSXAAAdCSW9lGfnBlAPDyqn5SZHvy6IPQc0KQZmIULF6pXr14qLi7WmDFjNG7cOOXk5GjatGkaNmyYzjnnHEknrs/VXkNDgy699FLt2bNH7777rvr162dl9XEadt5MnXIjH9RLOsP78nRexcVIF40PXX1gvRnDpT5+JC57pUlnOqRhY0BPyb/+6cHTJ0NKirepcACAJNPxKZsv9p2aMlTq3933/bslS2eNCll1YIPzxvoXt+T0NY07TjCI74QAgChnZ+crJ3T8kqTBvaQJfnT8iYuVvuY9VQAHiNhEV3Z2tlasWKGLL75YSUlJKioqUs+ePfXss8/qjTfe+GqUl7dEV0tLi6655hqtW7dOb731lvLy8qyuPk7DnwROMCXFO+eLnyR9Y6Y0un/n+8XFSrfMloZkhr5OsE5ygnTHXCnz9OuTSpJ6pJh9UxNDX69gSIr37bMdChMD6BkNAAg+u+LBgT1N5xAnSIiTbp8r9fWh40tGsvTdc0yyC5Gjbzfptjm+JbuGZkrfOsskkp1gcKaZcskOE226/wAA0J5d7RNJ8WZWKCdwuaT5M31rz42Plb6VbwYPwJkieubg0aNHa8mSUyfwr62tVVFRkWJiYjR27NgTtrndbs2fP18ffPCB3nzzTU2bNs2q6sJHQzKl/j2k0ipry506TEp00EiO+Fjp1rOlj76QVhZIh+tO3B7jksZmm56e9EqMTL3SpP93gfTu52bNtsaWE7cnxpnP9XljndewlZ8rbSu1tsxAp4S0W3beHN31F89p9+lsu5NF+/UDkWrqMOn1TR2v2xoqTpnW7ZjuKdJd50vvbZXW7JLqm0/cnhArTR4qnT9W6sFywhFpeB/ph1/Gg5v2nbpmV7dkaeYI6Zw8e6cE9VdsjJl2+83PrC23e4o0xoFr00d7PBTt1w8gMg3rLfXrLpUdsbbcacPkqLUIE+JMx59l26VVhbSPRjIHfSyDZ+vWrfJ4PMrNzVVKyondwL7//e/r5Zdf1k9/+lOlpKRo9erVX20bPny4evfubXV1cRKXS5qdKy1aY2GZCmxeV7vFxpgvrXNGSTvKpT+vkBpbTe+Ln15iXy9IWCctSbpqinTxRGlLsfTyp2ZR5+R46d4rnTsN36h+ZrRaRa11ZY7N5ncGAMJFUrw0bai0stC6MlMT7RtJ1hUpidLlk8w01Z+XmBj6WCzwH1ew1lA06NtNuulM6YrJJh785wbzGUhJMJ8BJ6zR6s2MEdI7n5+avAulWTnOfb8AAJHlWPvo3z+1sEw5t3303DHS3NHSF2XS/66kfTQSRWWItmXLFknepy186623JEkPP/ywZs6cecLrjTfesLSe6Ni0YdYOJT1rlJTVzbrygi0mxkz1dmxEWmIcN/Fokxhn1uo4lthKiHNukksyn+mrp1pXXkKcaSQEAISPC8ebDh1WuXKys0a8nCwhTpo05MRYgCRXdElPMomaY5+B+FhnJ20ykq1dZ7h3uulACABAuJg+3Nr20TmjTQcap4qJkfIG0D4aqRwc1gbudImuoqIieTwer69bbrnF4pqiI7ExZg2qOAs+wb3TpYtZiBAIO6P7SzOGW1PWZWc4Z00WAIgWaUnStRZ1ehibLU0eYk1ZAHw3d7Q1DXwume+fTk52AwAiT2yMdMMMazqu9MmwtoMJ4C8SXXCsrG7SlVP8O6a6QTpSb/70RUKsdOMsvtAA4erySf6NtvT3HiBJ4wc6c20uAIgGEwaZ9YX84e+zoEeK9PVpZnoYAOElNkaaP8tMw+irQOLBC8ZLQ1nFAAAQhvp1NzMP+MPv9tE42kcR/qLy47l06VK7q4AgOTNHamiWlmzybf8n3vb93PGx0nfOlgZnBlQ1ABZITpC+d6709HvSoZrO9/fnHiBJI/uZNS1iaNwEgLB17VSpsUXauNe3/f15FnRLlv7tXDNFGoDw1DdD+u450n8vNd8NO+NvPHj2KOmCsYHVDQAAK+TnmmfgG5t929/f9tFbz7Z2ikQgEFE5oguRZd4Y6ZqpwR2mm5ZkviyN7Be8cwIIjW7J0oLzg5+UnjxEuu1sE9QBAMJXTIx00yyzGHcwZXUzz5feGcE9L4DgG9RL+sE8MwIzWFwu6WvjpSsmMaITABD+zhsrXT0l+O2j3ztHys0K3jmBUInKEV2IPPm50rDe0ourpZLDXTvXGYPNg8HKxc0BdE16krTgPOnD7dJbn0lt7sDPlZpokudnDA5e/QAAoRUTI1091SwuvWiNmYolUC6XdG6edOE4KY7ODoBj9O8h3XOJ9M8N0ic7u3auPhlmTa4hzO4BAHCQ2SOl4X2kFz+RSqq6dq5Jg018nZoYnLoBoUaiCxGjfw/phxdIqwqlFTt8m8asveF9zGLGY7NDUz8AoRUbY0Z4js2W3t9qprDyJ+GVkiBNHWbOkU6iGwAcaXR/6Z6LpaXbpNW7pJpG34+NcUnjBkrz8qSBTM0COFJSvHTddNM4t3S79EWp5PHj+B6pZnr8s0ayDgkAwJn695B+eKG0ssC8/G0fHdHXtI+OGRCa+gGhQuiGiBIbY76UzM6VCg9IG4qkfYel8iOS+6RvOAmx0oCeppfetGFm8UYAzpfVzSySesUk6dPd0s4D5j5Q66Wxs2eqaczM629GcNGgAQDOl5wgXTxRumCc9FmxtKXEjPj39iU/JUEa2NN0eJo+XOoWxGnPANgnJ8u8KmqkNbukPRVScaXU1Hrifi6XWeMru6d0xiCTLI9hgQcAgMPFxpg1JmePlArLpQ17zXOw/Ojp20enDzdtKoAT0aSHiORymfljj80h29wqVdaaP2NcUmK8lJnGlxggkqUlSefkmZfHIx1tMMmuVrdZd6t7CkPwASCSxcVKk4aYl2QW6D5cJ7W0mS//qQlm9AZr7wCRKzPdJL4l07B3uNbcC9o8pmGvV7qUSKsIACBCxbikkf3MS6J9FJGNkA5RISGOEVtANHO5TGKrOz31ASBqJSdIAxLsrgUAu8S4TOILAIBoRfsoIhn5WgAAAAAAAAAAADgSiS4AAAAAAAAAAAA4EokuAAAAAAAAAAAAOBKJLgAAAAAAAAAAADhSnN0VAAAAp0qIlR65zu5a+CchNrjniubrBwAAiPZ4KNqvHwAA+I5EFwAAYcjlkhKj+Ckd7dcPAAAQ7fFQtF8/AADwHVMXAgAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkeLsrgAAeOPxSO4Wu2vhn5h4yeWyuxaRweORmtvsroV/EmKD+/OP9vcg2q9fct57EOzrBwCnxYPEgsHltOegRCwgEQ8SDwEAAuW02NcfVsTJJLoAhCV3i/Thk3bXwj9zF0ixCXbXIjI0t0n3LLK7Fv555DopMYhP1Wh/D6L9+iXnvQfBvn4AcFo8SCwYXE57DkrEAhLxIPEQACBQTot9/WFFnMzUhQAAAAAAAAAAAHAkEl0AAAAAAAAAAABwJBJdAAAAAAAAAAAAcCQSXQAAAAAAAAAAAHAklsgEIlxrm1R+VNpfJTW1mP9rapW2lkgDe0kZyfbWD6HX1CKVVEllR078DOw8IGX3lJLiba0eAAAIsaZWaf/hU2OBgnITC6SEeGFo2K+2USo+LB2qOf4ZaG6V9lVK/bpL8bG2Vg8AACCkjrWPlpzcPrpfGtiT9tFIQKILiECtbdKmfdInO6WiCqnNfeL2xhbpuY/M37slS+MHSWfmSFndrK8rQqOuSVqzS1q72zzIPSdtb2yRnn7f/L1vhjRlqDRjhJSeZHlVAQBACNQ3SZ/ukT7dbRJcnpOCgcYW6ZkPzN97p0uTh0ozR5jYEJGhokb6eKe0ca9UVXfq9oYW6Ym3pRiXaeCZMUKaNERKpJUAAABEgJY2aXNn7aPLzN+PtY/m50h9aR91JEJYIIK0uaUPt5tXXZNvxxxtkFbsMK+cvtIVk6UBPUJbT4ROXZO0ZJNJcLW6O91dknSgWnpjs/T2FmnyEOmyM6Q0El4AADhSQ7P05mZp9S7z5d4Xh2qktz+T3t0iTRwkXT5J6pYS2noidA7VSP9YL23bf2pnJ2/cHmlvpXn9c4M0O1c6fxyjvAAAgDO1uaWl26RlXwTWPpqbJV0xSepP+6ijkOgCIkTZEenFT8yUJIEqPCD9+i3zxfa8MVKsw1bx27xrmX7yP3NP+L+khFRl987VvEk36Yozf6DY2Mi97X1eIv19jVTdGNjxbW7T63vrfunaqdLEwcGtHwAACK3tpdKiNdKR+sCOd3ukDXul7WXSVZPNiG+XK7h1DLVojgfdHtM4s2ST70nOkzW2SO9tlTYXS9+YKQ3JDGoVAQAAQqq0SnpxtVTShfbRgnLp129LF4yVzqV91DEi74qAKLRpn/R/q04dghsIt8f06C0ok26d48w1G+ZOvEHTRn1NHnlUVVOu99b/r/7n9R9p38Ht+uE1v7e7ekHn8Uivb5SWbg/O+eqapBdWSvkHpaummOlsAABA+PJ4pHe2mNHZwdDQLP31E9MJ6rrpzvtyL0VfPNjcKv15pemwFAwHq6XfvitdM9VMcQ4AABDuNhSZGDYY7aNtbunNz6QvyqTb5kjJtI+GPQd+ZQHQ3oYi86U2GDfx9nYfMus2NDQH97xWyBkwSfMm36jzJt+kr8+5W0/+YLV6d8vWW5/+QUdqD9ldvaDyeKRX1wcvydXeygLTK/zkNT0AAEB4WbIpeEmu9j7dLf3lY8kd5DjTCtEUD7a0mfUlgpXkOsbjkV7+1IwSAwAACGfr9wRvEEB7x9pHG1uCe14rRFM8LJHoAhxt5wHT+BCqRETJYelPy80oLydLTkjVqMEz5PF4VFq5y+7qBNXSbaFtfFizS3rrs9CdHwAAdM2KHdIH20J3/o17pX9tDN35rRKp8aDHY6YvLzwQujIWr5M+Kw7d+QEAALqi8IAZyRWq5sti2kcdgakLAYdqajFfav25yf7oQikjWapukJ5427djCg+YBpSzRwVWz3BR9uUNPCOlp801CZ7SKjOM2h+BfAbe2yqNGSANZo0GRLhty1/QtuUv6JpfLLO7KgDgk4PV/iehAokFln0hjc2WRvT1v47hJBLjwQ17TTLSH4F8BhatkYb2ltKT/K8jAABAqDRa1D5aUG5mPjprZGD1DBeRGA8fw4guwKFe3yQdrvPvmIxkqXuK+dMfSzZJh6r9O8ZOjS31OlpXoSO1h7SnbIuefPX72rl/o0YNnKbs3rl2Vy8o2txmcU1/h2QH8hk41lM40EXNAQBA8Lnd0kur/X8+BxoPvrRaamr17xg7RUM8WNMgLV7r/3GBfAbqmqRXAigLAAAglF7fKFVZ1T66Uaqo8e8YO0VDPNxeVIzoqqio0KOPPqpXX31VJSUl6t27t6666io9+OCDWrBggf70pz/pqaee0p133ml3VQGfVNZKqwqsK6+lzaz7cNOZ1pXZFf/77r3633fvPeH/8sdepR9c+TubahR8G/eaqSWtcqDarNPBYuSIRO8/d6sKVv9Nbner3K0teuY7aZKk7z53VDExsTbXDgC8+3y/tMfCqfUra6WPC6W5o60rsyuiIR58f5tUb+F6upv3SfsqpUG9rCsTAACgIxU1Jj61SvOX7aM3zrKuzK6Ihni4vYhPdG3atEkXXXSRysvLlZqaqry8PJWWlurJJ5/Url27dPiwaSmeOHGivRUF/LCqMHTzznZk0z7pisnOmK7k4um366zx16rV3aI9ZVu0aNkjqjhaooT445XfsnuFfv7Hi045trWtWW53m955NLyHL620MNF5zKoCadYIyeWyvuxAlWxbpsUPzlX+DY9p8sU/8brPb290acjEi3X5T5ZYXDvrHD24W+tef1j7v1iumsp9io1LVEr3LGUNm6bRZ92igXlz7a5iUPl7vfNu+4Pm3faHiJ26kN8DIDLZEgsUmumsYxwQC0R6PNjcajohWW1lgfSNmdaX2xU8B41oiwfb4zMAAJHJjvbRjXulKyZJabSPhp2ITnRVVFTo0ksvVXl5uX784x/r3nvvVXp6uiTp0Ucf1T333KO4uDi5XC6NHz/e5toCvmlpk9bYsF5gm9uUO2+M9WX7a0BmjiblzpMkTRt1kcYOzdcPn8nXbxd/V/9+498kSeOGzdbrv6o94biKo6X6/pNTdPms8B7dWXJYKqqwvtzSI6bn+LA+1peNwB3YvU6v/OpsxcTGa3T+zeo1YIxaWxp0pLxQe7e8q/jk9Ihq2Ii26wUQnQ5Wm3UCrFZRY8od1c/6sv0V6fHghr1Sg4WjuY7ZuFe6fJKUmmh92Qgc8REAINLY3T56Lu2jYSeiE10LFixQSUmJ7rzzTj3++OMnbFu4cKFefPFFbd68WUOHDlVGRoZNtQT8U1xp5si3w/ZSZyS6TjZmyCzNm3ST3lv/v7oif4HGDDl1jHFza5Pu/9+rNHZIvr5x7s9tqKXvtpfaWzaJLmdZ89r9am2q1zd+tUm9B084ZXvdERtaSkMo2q4XQHSyOxZwQqLrZMSDwdHSJu08IE0YZE/5CAzxEQAg0uyrsHYK5/a2lzkj0XWySIuHTxZjdwVCZfv27Vq0aJEyMzP10EMPed1n8uTJkqQJE44HeitWrNC8efPUr18/JSYmKjs7W9ddd522b99uSb2BzhRbuC7TyUoOS26rxwQHyfx5v1RMTKz+/M5/eN3+28XfVXNLo+6+7gVrKxYAK9fmOpmdnz8E5kh5oZLSenlt1JCk1O5ZFtcotKLtegFEJ1tjgUr7yu4q4kHnl43AEB8BACIN7aOBiaR4+GQRm+h66aWX5Ha7NX/+fKWlpXndJzk5WdKJia6qqiqNGzdOTz75pN5991098sgj2rp1q2bOnKmSkhJL6g6cjp2NC02t0qFq+8rvigGZIzR3wvXauPMDbdm94oRtr618Umu2L9H9t/xDSQkpNtXQd/tsfph7HPgwb22uV0NNhddXpOvWZ7gaayu1c+2rdlfFEtF2vf6I5t8DINLY+sW+SnK77Su/KyIlHqxrkiprO98vVOyMRbsimp+DxEdGNH8GACDS2BkPN7ZIlTX2ld8VkRIPexOxUxcuXbpUkjR3bsfzTB9LXLVPdF122WW67LLLTthv6tSpGjlypBYvXqy77rorBLUFfHe0wf7y+3aztw6BuuHcf9eHm17Sn9/9Dz3+3Q8lSZt2fqg/vHGPHrz1LWX1HGJvBX10tN6+smubzHzEcbH21SEQqxffq9WL77W7GraYdsUvtO/z9/TGb69W96wc9c/NV99hU5U9eo56Dhhtd/WCLtqu1x/R/HsARJojNsYCza3my32KQ9doioR40M5YMBzKD1Q0PweJj4xo/gwAQKSxMx4+Vn5vh66EFAnxsDcRm+jau3evJGnw4MFet7e2tmrVqlWSTkx0edOrVy9JUlxc4G9XTk6OYmIidgAdLDTne68pc8hUr9t+dKGUkdzxsRlJx/+878rTl1PdID3x9qn//435N6t8x1Ifaxu4hLhk/f7OQr+OmTB8jt57rOPhRoP7jtY7j7Z99e/yw0V64C9f122XPKYJw+cEWtWv5OTmqLk1xJlIl0vXPFzc4eZgfQY6+vlL0oickWptrvOhsoGLjU/WlQ/49/M/nbFzb1fO9Gu9bnvt4fOCUkZuTo7aWoL38w/We9AvZ6ZueGC9Nrz5axVtfkvblj+vbcuflyT1Hzlb59/xgrr1GdblcqTgvgeBXn9XrjcmNl5xCaf5BepEuH4Gjgn170Gwrx9Ax658YKdi45O8brMiFhg34Qw11R7ysbaBc1o8aEksKKnHgPE6d8GbXrd19vOXuv4ZKNy1R9nZs32sbeCc9hyUwjcWiLZ4sCNO/AwAALyb+2//VK/Bk71us6J99Ppv3KgDBct8q6yPAol9vbG7fdSb08XJ7nbTReTn52vjxo0BlRGxia66OtMI29Dg/Q1ctGiRKioqlJ6erqFDh56yva2tTW63W3v37tXPfvYzZWVl6etf/3rA9SkrKwv4WKC9hvqO5ynJSJa6+zCyNCbGt/28OXigVPv37w/sYD8kxYd2iGxjc73ufeEKzcy7TFeceWdQzllWWqrGltB3KXG3tSom1vvt24rPQElxkdpaQ7viZ1xicH/+3bNyNGjsvKCe82SlZaVqbQrezz+Y70HmwHE6/44XJEnVFXu1f/tH+nzZH1S6Y4Vef+Jy3fDAesXGJXS5nGC+B125/kCvd9SZ8zXqzPkBlxvOnwEp9L8Hwb5+AB1rbWnqMNFlRSywv2SvmuqqAjvYD06LB62KBZtiena4zdefvxT4Z6C5sd6S7wNOew5K4R0LRFs86I0TPwMAAO8isX001LGvN6FoH/XG1zj5wIEDAZcRsYmurKwsVVVVacOGDZo5c+YJ28rKynT33XdLksaPHy+Xy3XK8WefffZXI75GjBihpUuXqnfv3n7VISUlRbW1tcrPz9fBgwe9lgP4raXjRbKqO+k4lpFkbuJut1TdePp9OzpXepJLAwYM6KSSXZcQF/ioCl+s2LJYu8s2a39FgZZtXnTK9j/+ZJv69Bjk1zn79e9vSS/eptoKJXfzvmB0sD4DHZ2nueGosvr6dy8MRGx8aH/+odC/X/+g9+ANhYzMwcqYfbNG5d+kl/9ztsoKVql816caMDK/y+cO5nsQrOsP5fWezCmfgVAJ9vUD6FhzXaUSU7zPJR3qWKCtpVG9e2bIE2irgB+cFg9aFQsmpnQ8U0hnP38pCJ+BpqOWfB9w2nNQck4sEG3xoJWIhwDAGh7b20cV9Hgo1LGvN6FoH/XmdHGyx+ORx2NGoPXr1y/gMiI20TVv3jxt375djzzyiM477zzl5uZKktauXaubbrpJFRVmsdGJEyd6Pf6Pf/yjjhw5oj179uixxx7T+eefr1WrVmnQIN9/sC6XS6mpqQEPtwO8+WCr9Pom79s6ml7mmPuuND0Vqhul+17zv+z4WOmzT99TrAWzcLY1Sx8+Gbrznzf5Jp03+aagnrOwoFCxXe8E2annlklbO+g0EurPwJgh3fTMl+sbhlJTq3TPqc/XsFZQWKjEID5VQ/0euFwuZQ2frrKCVaqrCk4vpGC+B8G+/lBc78mc9hkItmBfP4CO/XmltHGv922hjgWGZiWpeF+R/wcGwGnxoFWxoCTd+6r3tXs7+/lLXf8MXHfJLL34H8SD3jgtFoi2eNAKxEMAYI33t0pLNnnfZkX76Ja1S4PePhrq2NebULSPemNFnByxi0YtXLhQvXr1UnFxscaMGaNx48YpJydH06ZN07Bhw3TOOedI6nh9rpEjR2r69Om6/vrr9cEHH6impkaPPvqolZcAeDWwl31l9+8uS5JcOL3sjmerieiyEZi9W96Tu631lP9vbW7Qvi3vSpJ6DsizulohE23XCyA6DbTxeWxn2TiOeBD+ID4CAEQaO2PSAT1oHw1HEdvPJDs7WytWrNDdd9+tjz76SEVFRcrLy9Ozzz6r2267TcOHD5fUcaKrve7du2vEiBHauXNnqKsNdGpwLykhTmo+9XtKyOV6ny0PFsvNkt7ZYl/ZcJYVf/2hGmoqNWzSZcocOE5xiSmqqSzWjo9f1JHyAo3Ov1mZA8fZXc2gibbrBRCdcmx8HhMLhIfcrI5H+IdSjEsa0cf6ctE1xEcAgEgzOFNKiJWa26wvm3g4PEVsokuSRo8erSVLlpzy/7W1tSoqKlJMTIzGjh3b6XkOHjyoHTt2aPr06aGoJuCXxHhpylDp40Jry3W5pJkjrC0T3g3rLWV1k8qPWlturzRpZOBT5cIms+c/od3r/6nSgpXauXaxmuqPKDGlmzIHjteUS+9R3uxb7K5iUEXb9QKITgN7SoN6SfsqrS23W7I0NtvaMuHd1KFmup4Wixt3xmZL3axfJx1dRHwEAIg0SfHS5KHSJxaPS6F9NHxFdKKrI1u3bpXH41Fubq5SUk6M0m+88UaNGDFCEydOVPfu3VVYWKj/+q//UlxcnH74wx/aVGPgRPk51ie6xgyQeqZZWya8c7mk/FzplbXWlntmjunF6yTZeXN01188p92ns+1ON3jc+Ro87ny7q2GZaLteX/B7AESm/FzpxU+sLXPmCKZpCRcpidLkIdLqXdaWm59rbXnBwHOQ+IjPAABEpvxc6xNdYwdIPVKtLRO+icqvKVu2mDm/vE1bOGPGDL355pv61re+pYsuukiPPfaYZs+erU2bNmnECNK1CA/9e0gTB1lXXoxLOr/zwY+w0NRhZoSVVbol02MFAIBwMmmwGeFtlbREZyY5Itm8MWYxdKsM7yPl9LWuPAAAgNMZ0EOaMNC68mJc0vnM9Bu2onJE1+kSXXfeeafuvPNOq6sE+O3qqVLhAamuKfRlnZtnpsexW8mhQj226Js6Wleh1KRuuvu6FzQka8wp+7316R/1tw8flsft1sQR52jBVc8oLjZeG3cu1R/f/Kkammrlcrk0fdTF+s7XHlZMjMn5/+3DR/Teuj8rLjZBCfFJ+v7lT2rUoGmqOFqqx//+LR2oKlJ8bKIGZOborqv/R93Telv9FnwlMU66YYb09PvWlHfddCk5wZqyAABA5+JiTSzwm3cljwUDEa6dJqUlhb6czhAPHpeZLl0yUXptfejLSvgy9nQ5bHQ/AACIbNdMlXYetKZ9dN4YM4U4whMjugCHSk+Svj7Nv2OqG6Qj9eZPX/XrLl0QJr0Vfrv4Dn1t+u164Z4CXTf3Hj226JZT9ik7vEcvvPNL/df3VujPP92pqtoDemP17yVJ6ck99O/z/6Y/3r1Nz9y1Xlv3fqz31v+vJGnn/k16/eNn9PSCT/Xsjzbp8ll36ul/mKR3bEysbpz3Sz2/cId+/+PP1K/XMP1+yd2WXXdHRvSVzhrp3zGBfAZmDJfyBvhXDgAACL3BmdK8PP+OCSQWmDRYmmDhbAKnQzx4otkjzUgrfwTyGbjsDJNYAwAACCfpydK1U/07JpBYqH+P8J3tquRQoe56epZueSRX3//tVBWVb/V7v+aWRt37whW65ZFc3fHEBN3z+/O0v+L4vJBrtr+p7/1mku54YqJue3ys3l33Z5+Os1JUjuhaunSp3VUAgmLCIOnSidLrm3zb/4m3/Tt/j1Tpjrmmx7DdqmoPqqBknR6+7V1J0uxxV+vp1+7U/oqdGpB5fE69FZ+9opl5l6lnRpYk6ZIZ39VLSx/U5Wd+XyMGnPHVfgnxSRref6IOVBVJklwul1rdLWpsrlNyYppqG48os5tZbb1Hel/1SD8+T8uoQdP1z1VPh/qSfXL5JKmqTtpS4tv+/n4GRvUzvWMAAEB4umiCVFkrbdjr2/7+xgLD+0jXz/C/XqFAPHiqGJf07bOkp9+Tyo76doy/n4G5o81arQAAAOFo4mDpklppySbf9vc3FuqZKt0+JzzaR7051hHsgqm3aPlnr+ixRbfod3et9Xu/r02/XdNGXSSXy6V/rHpaT7x8q379vWXyeDx65KUb9fh3l2lY//EqP1ykbz82Svljr1JcbHyHx1ktKkd0AZHk3DEm2RFsvdOlBedJ3VOCf+5AHDpSrJ4Z/RQba/LzLpdLfXoM0sEj+07Y7+CRferbY/BX/87qOeSUfSTpcHW5Vnz2iqaPvkSSNLz/BF09+4e66aGhuuGBbL26/L905xVPnXJcm7tN/1z1tGaNuTyYlxew2Bjpm/mhWbNtzADTcBKuD3IAAGASHfNnSVOHBv/cuVnmS31CmHSPJB70LjVR+v48KTsEU+mcm2dGczFlIQAACGfzxpjBAMHWJ0P6QRi1j57sWEeweZNulGQ6gh06UnzKqKrO9kuIT9L00V+T68ugb/SgGV91BpMkuVyqbTwiSapvrFZGSi/FxyV2fpyFwuQrC4CumDvaLEa+aI0ZettV04ZJV0ySUhK7fq5wVNdYrV8+f6m+PmehRg6cIslMcbNyy6t64Z6dyuzWX/9Y9bQe+Mt1+s33V351nMfj0VOv/pvSk3voyvy77Kr+KeJipZvzpaE7TO+VlrYuni9Gumi8NGe0SaQBAIDwFhsjfWOmNKS39K8NUlNr1853bKHt88ZEbiwQafFgWpLppLZkk7Rih9TVZdtSE800QBMHd74vAABAODh3jFmCZdEa6agf0xJ2ZPpwM7ggJYzXrD9dR7D2Mx74ut8xr638rWZ+2anL5XLpF/MX6f4/X6WkhFTVNlTp3ptfVXzcqW9M++OsRqILiBCj+0v3XCz9a6O0ZpfkDuDbba806aopZiRPuOndfaAOV5epra1VsbFx8ng8Oli1T326nziUqU/3QSqt3PXVv8sPF52wT31jjX7+hws1a8zluubsH331/ys/W6yh/cYps1t/SdIFU7+l3/3jB2ppbf7qxv27fy7QwaPFuv+b//hqwfJwEeOSzh4l5fWXXl4rFZQHdp7hfcxi81ndgls/AAAQWi6XmV5uVD9p8VppW2lg5xmcadaBHdAjuPULBuLB00uIM7H8hIEmHiz3cSrD9lwu6YxB0pVTzJrAAAAATpI3QPrpJV1rH838sn00HNarX/DUTO2vKPS67b9/uDEkZb74wYMqrdipR+/4QJLU1taqv37wgO795qsaP+ws7Sheq/94/jL9/sdb1C01s8PjrEaiC4ggyQnSddPNaJzVO6WPd3Y+wsvlMsmRM3OkUf1NwiQc9UjroxEDJun9DX/RBVNv0Yoti5XZPfuUXgezx12t//dMvm4+7z71SO+rJav/R3MmXi9Jamiq1c/+cKGmjLxQ8+f94oTjsnoN0zvrnldDU62SE9O0ZtsSZffOPd6o8Y8FKq3Yqftu+YfXHgvhoneG9G/nSmVHpFUF0to9nffqToiTJg8xn4FQTHkDAACs0ytNun2udOCotKrQxAINzac/Jj5WOmOwlJ8rDeplTT0DQTzom+F9TQe4nQdNPLilRGpzn/6Y9CRpxnBp5gipZ5o19QQAAAiFY+2jF37ZPvqJD+2jMS4ziCA/VxrZL3zaR5/8wSen3R4fl+hTRzBfO4y9vOxxrfz8VT16+/tKSjDzNe4s3aTK6lKNH3aWJGnkwKnK7Jatnfs3anLueR0eZzUSXUAEykj+crqZseZGXnxYKjlsGjna3FJ8nOmdkN3T9NYNl3UXOvP/rn5Wjy26RS8tfVApSRm6++vPS5J+/fKtmpl3mWaNuUz9eg3TN8+/X//vd2dKkiYMn6NLZtwhSXp15W+1o/hTNTbXaeWWVyVJZ024VvPP/Xflj71SBcVr9f3fTlF8XKKSElL1s2+8KEn6fM8q/WPVUxrYZ5R+8OR0SVK/nkN13y2vWf0W+Kxfd+maaaYHyoFq8xkoPyI1t5qpbBLizKitgT2lvt0id1oiAACiVd9uJg64YpJ0qMbEAmVHpKaW47FA3y9jgSwHxQLEg75xuaScvubV0mZ+9sWV0sEa8+8Yl5QcL/XvYT4DvdJYhwsAAESWbsnSBeOk88dKVXUmHt5f5fz20fZ87Qjmy36vfPSEPtz0kh65/X2lJXf/6v/7dB+owzVl2ntguwb3Ha39FTtVVrlLA3uPPO1xVnN5PJ6uTt8NAEHX1ix9+KTdtfDP3AVSbPh27nWUplbpnkV218I/j1wnJQYxKIr29yDar19y3nsQ7OsHAKfFg8SCweW056BELCARDxIPAQACFWjsW3xwhx5bdIuq6yu/6gg2tN84SSd2BjvdfoeOlOgbvxqofj2HKTkxXZKUEJeopxaskSQt3fiSXlr6oGJcMXJ73LrhnJ/pnDO+0elxx1gRJ/P4BQAAAAAAAAAAcJiBfUZ2OMXhj6/9g0/79e6erfce63g81Dln3KBzzrjB7+Os5JAJKgAAAAAAAAAAAIATkegCAAAAAAAAAACAI5HoAgAAAAAAAAAAgCO5PB5PeEyiCADteDySu8XuWvgnJl5yueyuRWTweKTmNrtr4Z+E2OD+/KP9PYj265ec9x4E+/oBwGnxILFgcDntOSgRC0jEg8RDAIBAOS329YcVcTKJLgAAAAAAAAAAADgSUxcCAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkUh0AQAAAAAAAAAAwJFIdAEAAAAAAAAAAMCRSHQBAAAAAAAAAADAkeLsrgAAeOPxSM1tdtfCPwmxkssVnHNx/dF9/QAAwHnxQLBjAaddv0Q8BAAAgodYiPfAHyS6AISl5jbpnkV218I/j1wnJQbprsr1R/f1AwAA58UDwY4FnHb9EvEQAAAIHmIh3gN/MHUhAAAAAAAAAAAAHIlEFwAAAAAAAAAAAByJRBcAAAAAAAAAAAAciUQXAAAAAAAAAAAAHIlEFwAAAAAAAAAAAByJRBcAAAAAAAAAAAAciUQXAAAAAAAAAAAAHIlEFwAAAAAAAAAAAByJRBcAAAAAAAAAAAAciUQXAAAAAAAAAAAAHIlEFwAAAAAAAAAAAByJRBcAAAAAAAAAAECU27b8Bb3ywBy7q+E3El0AAAAAAAAAAABwpDi7KwAAAAAAAAAAAAB7vP/crSpY/Te53a1yt7bome+kSZK++9xRxcTE2ly7zkVFoquiokKPPvqoXn31VZWUlKh379666qqr9OCDD2rBggX605/+pKeeekp33nmn3VUFgq6lTdq4V/q4UCo7IrW6pdQEafxA6cxcqV93u2sYWiXblmnxg3OVf8NjmnzxT7zu89sbXRoy8WJd/pMlFtfOGkcP7ta61x/W/i+Wq6Zyn2LjEpXSPUtZw6Zp9Fm3aGDeXLurGDL8/I0DR6VVhdLmfVJtkxQXI/XtJs0aIU0aIiVERTQAANGrrkn6dLe0Zpd0uFbySMpIlqYMlWaOkLqn2F3D0CEW4D2A5PFIew6ZePCLMqmh2cR/QzKl/Fwpr78Uw3w/ABDRKmtN2+CGIqmm0dz3M9NMLDhlqJScYHcNQydaYyF/2wPn3fYHzbvtD9q2/AVtW/6CrvnFMnsqHqCIb9ratGmTLrroIpWXlys1NVV5eXkqLS3Vk08+qV27dunw4cOSpIkTJ9pbUSAEdh2Qnl9hGrbbq26UVhaa16TB0g0zpfjwT8wjAAd2r9MrvzpbMbHxGp1/s3oNGKPWlgYdKS/U3i3vKj45PaITXdGutU36+6emcbO9Nre0r9K8/rVRujlfGtXPnjoCAEJr9U7plXXmmdBeZa30zhbpvc+l88ZKF46TXC576gggdGobzXfCXQdP/P/GFpP0+qJM6p0u3Xq26QgFAIgsbo/0+kZp2XbT2en4Bqn0iLR4nfT6Jun66aYjLCJDNLYHRnSiq6KiQpdeeqnKy8v14x//WPfee6/S09MlSY8++qjuuecexcXFyeVyafz48TbXFgiuwgPS/yw1Ddqns2GvVNcs3T5HiqUXX8RZ89r9am2q1zd+tUm9B084ZXvdkXIbagUruN3SCyulz0tOv199s/T7D03jRt4Aa+oGALDGih2m8eJ03B6T8GpulS6fZE29AFijvkl6+n2p/Ojp9ztUIz35nnTX+VKfDGvqBgAIPY9H+vsaafWu0+/X3Cr97yoTF04Zak3dEFrR2B4Y0c3aCxYsUElJie688049/vjjXyW5JGnhwoWaMGGCWltbNWTIEGVkEM0hcjS1SM8v7zzJdcyOMtObF5HnSHmhktJ6eX2oSVJq9yyLawSrLPui8yTXMW6P9OeVZmorAEBkKK2SXu0kydXeh9t9f24AcIbF6zpPch1T12RGfnk8ne8LAHCGdXs6T3K199JqqaImdPWBdaKxPTBiE13bt2/XokWLlJmZqYceesjrPpMnT5YkTZhw4g98z549uuyyy5Senq4ePXro5ptvVmVlZcjrDATLuj1mlIY/VhWeOqVNJGltrldDTYXXVyTr1me4GmsrtXPtq3ZXxVbR9vN3u6UVBf4d09R66hSHAADnWlFw0vQ0Pli+IyRVCQvRFgt4w3sQXY42mLWa/VF2RNp5ICTVAQBYzOPxP7Zrc0sf7wxNfcJBNMVC0dgeGLFTF7700ktyu92aP3++0tLSvO6TnJws6cREV01NjebOnauePXvqpZdeUkNDgxYuXKhLLrlEq1atUowfK7R6PB7V19dLklJSUuRi0ntYZFWh/8fUNEqfFUfufLyrF9+r1Yvvtbsalpt2xS+07/P39MZvr1b3rBz1z81X32FTlT16jnoOGG139SwTbT//7WVSVZ3/x60qkOaMYo0WAHC6xhZp/R7/jysolw5WR+bUZdEWC3jDexBdVu80o/b9tbJQyom8Tt4AEHWKD5uXv9bskr42XoqLDX6d7BZNsZCT2gODlUOJ2ETX0qVLJUlz53a8qFpJiZmbo32i6/e//73279+v5cuXa9CgQZKk7OxszZo1S//61790xRVX+FyH+vr6r5Js/fr18ytJBgTMFaNrHt4X0KE/f+Bpff72w0GuUGBi45N15QMBZOw6MHbu7cqZfq3Xba89fF5QysjNyVFbS0NQzhWs6++XM1M3PLBeG978tYo2v6Vty5/XtuXPS5L6j5yt8+94Qd36DOtyOVJ4Xv8xTvv5d9WocxZo7AUL/T6uolYaOnykWpsDyJIBAMJGjwHjde6CNwM69tLr7tD+LW8EuUaBCWY84MRYgHgIXTHzpuc0YOxFfh+3csMe/fKG2SGoEQDASkOnzdfkqx/x+7i6JmnMGWeq7rCfw4JDgFgo8PegK+2BMbHxiktIDrjO/r4HbrdbZWVlkqSJEydq48aNAZUbsYmuvXvNL+PgwYO9bm9tbdWqVasknZjoWrJkifLz879KcknSzJkzNWzYML3++ut+JbraO/bDAkItLjEl4GMbmlq1f//+INYmcF25Dm+6Z+Vo0Nh5QT3nyUrLStXaVB+UcwXz+jMHjtP5d7wgSaqu2Kv92z/S58v+oNIdK/T6E5frhgfWKzYuocvlhOv1S877+XfV4KbWgI89WFmlhupDQawNAMBqnrTAVxGvrm2IyHjQibEA8RC6oiXQaelj4sPmHgAACFzv+saAj62sqlZlGDwLiIW69h4E2h446sz5GnXm/IDL7cp7cOBA4HMoR2yiq67O9EZvaPCePVy0aJEqKiqUnp6uoUOPfxHctm2brr321MzumDFjtG3btoDrw4guWMnd2qyYABIXibFuDRgwIAQ18l9sfOA9B+zSv1//oI5oCoWMzMHKmH2zRuXfpJf/c7bKClapfNenGjAyv8vndsL1h1Iwr7+rEmPdAR+b2T1N7vSuJz4BAPbJSA38Pp6WFEs8GKBgxwJOu34pvOKhaBfjbgroOHdzbdjcAwAAgUsOIBz0eDxyuVzqkZGkpDB4FhALBe89CGV74Mn8fQ/aj+jq27dvwOVGbKIrKytLVVVV2rBhg2bOnHnCtrKyMt19992SpPHjx58w72NVVZW6d+9+yvl69uypHTsCX525sLBQqampAR8P+ONPy816W/764xM/0sCePwp+hQLQ1Crds8juWvinoLBQiUG6q4b6+l0ul7KGT1dZwSrVVQWnl46Trj8Ugnn9XXXgqPTQEv+PG9VP2rd3d/ArBACwlNsj/epfUmWtf8clxkkr3nxeSfGhqZe/nBYPBDsWcNr1S+EVD0W79UXS/63y/7irzx2l539cEvT6AACsVd0g3f8Pqc2PfrAul0vZPaSCz9eGxdrdxELBfw9C0R54Mn/fg7q6uq+Wf1q5cmXA5UbsEKN588wwxEceeUQFBQVf/f/atWs1d+5cVVRUSDLzPgKRJj/X/2MG95IG9gx+XWCvvVvek7vt1GnsWpsbtG/Lu5KkngPyrK4WQqxvNykngE4wgdw7AADhJ8YlnZnj/3FThipsklwAumbCQCktyb9jXJJmjQhJdQAAFstIlsYP9P+4M3MVFkkudE00tgdGbF+rhQsX6sUXX1RxcbHGjBmjUaNGqbGxUTt37tRFF12kIUOG6J133jlhfS5J6tGjh44cOXLK+Q4fPqyePckCwBly+krDeku7fVxmxyXpgnEhrRJssuKvP1RDTaWGTbpMmQPHKS4xRTWVxdrx8Ys6Ul6g0fk3K3MgP/xIdP5YaddB06vfFwN7Snn9Q1snAIB1pg+Xlu+Qjvg4PX5inDRnVGjrBMA6cbHSeWOk19b7fsz04VLPtNDVCQBgrXPzpC0lUquP6zb2TpcmDQlplWCRaGwPjNgRXdnZ2VqxYoUuvvhiJSUlqaioSD179tSzzz6rN95446tRXicnukaPHu11La5t27Zp9OjRltQd6CqXS/rO2VL/7r7tf/VUKc/+qXcRArPnP6ERU69S+a7VWv3qffrgj7dr87tPKq1Hf8277Y867/bn7a4iQiQnS7puuklkd6ZPhnTbHImlJAEgcqQmSnfM9W1ER3ysiR17Z4S+XgCsc9ZI6WwfE9ij+0vXTA1tfQAA1sruKX3zTCnWh+/63VOk2+eKKYgjRDS2B7o8Ho+Pfb0jR21trTIyMuRyuVRTU6OUlJSvtj3++OP6+c9/rt27dys7O1uStGbNGs2YMUOvvvqqrrzySp/LaT+/ZG1tLWt0wXKNLdK/Nkjr9kjNXnpv9OsufW28NC6Aocyh5sR5eB+5LngBAdcf3dcfTNv2S29ulkqqTt0WFytNGixdMUlKSbS+bgCA0KusNSM6tu6XvH3zy+krXXaGNLCX9XXrjNPigWDHAk67fil846Fo5vFIHxdK72+TqupO3Z6SYKavvmCcbw2hAADn2X1Qen2TtMfLzE8xLjPF4ZWTpW4pp263E7FQdLwHwcqhRGUIunXrVnk8HuXm5p6Q5JKk22+/XU899ZQuv/xy3X///WpsbNTChQs1bdo0XX755TbVGAhMUrz09enSJWeYZNeSjSbhlRArffccaWhv5t0FIl3eANNDd2+ltHmftLJAamkz94dfXm56/AMAIlevNOnWs00D99rd0ntbzXMgMU764YVSVje7awgglFwus97KzBHS9lJpe5m0Zpe5DyTHS/ddKSVEZcsQAESPYX2ku86X9ldJG4rM9NbH4sGfXyZ1S7a7hkDXRWV/nS1btkg6ddpCScrIyNDSpUvVr18/XX/99br11ls1a9YsLVmyRDHM6QSHSkkw01YkJ5h/JyeYhxxJLiA6uFzSkEzp8knmfiCZgJYkFwBEjx6p0vnjjj8HkuJJcgHRJCZGGpNtpic8dh9IiCPJBQDRZEAP6dIzTowHSXIhUkRlSHO6RJckDR8+XEuWLLGySgAAAAAAAAAAAPBTVA5R6izRBQAAAAAAAAAAgPAXlSO6li5dancVAAAAAAAAAAAA0EVROaILAAAAAAAAAAAAzkeiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjhRndwUAwJuEWOmR6+yuhX8SYoN7Lq4/eOezQjCvHwAAOC8eCHYs4LTrl4iHAABA8BAL8R74g0QXgLDkckmJUXyH4vqj+/oBAADxQLRfPwAAiG7EQrwH/mDqQgAAAAAAAAAAADgSiS4AAAAAAAAAAAA4EokuAAAAAAAAAAAAOBKJLgAAAAAAAAAAADgSiS4AAAAAAAAAAAA4EokuAAAAAAAAAAAAOBKJLgAAAAAAAAAAADgSiS4AAAAAAAAAAAA4EokuAAAAAAAAAAAAOBKJLgAAAAAAAAAAADgSiS4AAAAAAAAAAAA4EokuAAAAAAAAAAAAOBKJLgAAAAAAAAAAADgSiS4AAAAAAAAAAAA4EokuAAAAAAAAAAAAOBKJLgAAAAAAAAAAADgSiS4AAAAAAAAAAAA4EokuAAAAAAAAAAAAOFKc3RUAAG88Hqm5ze5a+CchVnK5gnMurj+6rx8AADgvHgh2LOC065eIB4kHAQAIHmIB3gN/kOgCEJaa26R7FtldC/88cp2UGKS7Ktcf3dcPAACcFw8EOxZw2vVLxIPEgwAABA+xAO+BP5i6EAAAAAAAAAAAAI5EogsAAAAAAAAAAACORKILAAAAAAAAAAAAjkSiCwAAAAAAAAAAAI7EMqlAFGhskfZXSS1t5t8tbdKBaql3uhTjsrduAELP7ZEqa6RDNcfvA61tUn2zlJJgb90AANaoaZTKjpwYD1bVSd1TJBfxIBDx2txS+VHpSH27eNAtNbdKCbQMAUDE83ikw3XSweoT2wXqmqTURHvrBgQD4QwQgTweaW+l9MlOafdB07jdXn2z9NDrUmKclN1TGj9QmjqMBm8gkjS2SOv2SJv3ScWHzb/bq2uWfv6ylJkmDe0tzRxh/qSxEwAig9stbS+VPt1t4sIj9Sdur2+W7v+HlJYoDeolTR4iTRgkxcXaUVsAoXC0Xvpkl7Rt/4mJ7mPqmqSf/l3q203K6SudmWP+DgCIDM2t0sa90oa9UnGlif/aq2uW/v0VqUeqNCRTmjFcysmiUzyciUQXEEE8HmlzsfT+VqnkcOf7N7VKuw6a1xubpMlDpYvGSxnJIa8qgBCpbZTe3iKt3W1+xztTUWtea/dI/btL5+ZJk4aQ8AIAp2pzSysLpI++ML12O1PbJG0rNa/X1kuzcqR5YxjhATjZgaPSW59JnxWbkf2n4/aYJFjZEWn5DpPwunC8NLyPFTUFAIRCY4v07ufS6p2nJre8qaozr417zexPc0abzrAkvOAkfH0BIkRNo/TKpybRFYjmNjMCbPM+6eopNHQDTrR5n/Typ6bRMhClR6T/+9j09vr6NKlbSlCrBwAIsfKj0oufSPsqAzu+tsk0imzcK90wQxpGQzfgKG63tOwL6c3NZlrCQBQekArfk84aKV080cwCAgBwjh1l0t9WS1X1ne/rzaEa066wocjEg5npQa0eEDIxdlcAQNftOSQ9vCTwJFd79c2mofsvH5u5egGEvza3CWSfXxF4kqu9rfulh98wDR0AAGdYu1t67M3Ak1ztHaqRnnpPeu9zM2MAgPBX3yz97gPpXxsDT3K1t3yH9PibUkVN5/sCAOzn8Uivb5T+e2ngSa72dh2UHn3DjA4GnIBEF+Bwuw5I//2BmV89mNYXmUZzkl1AeGtzS/+3Slq9K7jnbWiWnl0qfVEW3PMCAILv40Lpr5+YZ0KweCS9sdm8AIS3+ibpmfdNo2QwHaqRnnxXOlgd3PMCAILL45EWr5U+2Bbc8za3mbbBDUXBPS8QCiS6AAcrOyL9fpl58ITC1v3S39bQkxcIZ4vXSZv2hebcrW7pTx+ZRWsBAOHps2IzvUyovL/VTIUGIDy1uaXnPpJKqkJz/upG07GypjE05wcAdN3bW6SVhaE5t8djZn3aQSdYhDkSXYBDtblNz92mVt+P+dGF0n1Xmj99tW5P6BrREV62LX9Brzwwx+5qwA+fl5he/P7w9z7Q3GbuNS2M7gSAsFPTYKau9adPUiDx4OsbTQcrAOHn/a1mKnt/+HsfqKo3IwUAAOFnzyGzxqo//H0OuD1mHdj6Zv/rB+dxavsgiS7AoT7YKpUc9u+YjGSpe4r50x+vrKUHHxBu6pukvwfQgz+Q+0D5Uentz/wvCwAQOh6P9PJa/xscAnkOtLlN40Ywp0YE0HWlVf43bkqB3Qc27ZM27fW/LABA6DS3Si+t9n8mpkCeA0cbpH+s968cwEpxdlfAChUVFXr00Uf16quvqqSkRL1799ZVV12lBx98UAsWLNCf/vQnPfXUU7rzzjvtripC5GC1mU+2ulGKcUmZ6dKUIVJakt01C0xNo/ROAF9oAlXXJL2zRbpmqnVlwjrvP3erClb/TW53q9ytLXrmO2mSpO8+d1QxMbE21w4deX+rVN1gXXlLt0v5uVKPVOvKDKb6JmldkXSoWmrzSOlJ0sRBUr/udtcMgBU8HqmowoyErW+W4mOlAT2kMwZLCQ79RrTzgLWLgxcfltbukWYMt65MAKf3jw3WJqBfWy+NGyjFOrTL9OFasxb1kXrJJRPXThkqdUuxu2YArOB2S9tKTQzV1Colxkkj+kp5/aUYh97XVhVau47ip7ul2SOlgT2tKxPWcXr7oEO/1vlu06ZNuuiii1ReXq7U1FTl5eWptLRUTz75pHbt2qXDh82QmIkTJ9pbUYTEvkppySapoPzUbUs2msaNy86Q0v0c4WS31Tut71G7drd0yUQpKd7acruqZNsyLX5wrvJveEyTL/6J131+e6NLQyZerMt/ssTi2oXG0YO7te71h7X/i+Wqqdyn2LhEpXTPUtawaRp91i0amDf3hP3n3fYHzbvtD9q2/AVtW/6CrvnFMnsqHgKR+vNvbpVW77K2TI/HTJN48URry+2quiYz5db6olOnX3xnizS8j7m3De1tR+0AWOGzYvP7vt/L+jX/3CDNGCFdNN4kv5xkZYE9ZU4fJrlc1pcdqEiNBfzlb3wYSSL1M3Cg2vv33FA62mA6DEwYZG25XXXgqPT6JrMG9cmjHt7YbJJ3l50h9UqzpXoAQszjkZbvkJZtN1OxtrfsC5P0Pme06djppBjH7ZFW2RAPriqQrp9hfbldEamxQGeirX0wohNdFRUVuvTSS1VeXq4f//jHuvfee5Weni5JevTRR3XPPfcoLi5OLpdL48ePt7m2CLbtpdKflne8rkyr2/RK3XVQ+v485wS1brfpsWG1plazXld+rvVlw3cHdq/TK786WzGx8Rqdf7N6DRij1pYGHSkv1N4t7yo+OT2iGzKixaZ99syN/cku6YJxUpxDGoOP1Eu/e186VNPxPrsOmn2+mW8aOQBElo++MCMQOlLfLC3dJhUdku44x/TsdYIj9dKWEuvLLTks7a2UhmRaXzYCR3wYmexo3JRMwttJia6iCunZpVJDi/ftbo+0eZ+JCf/tHKl/D2vrByC03B6znumnuzvep6pOWrxOKj0ifX2ac5JdO8qkilrry11fJF02SUpJsL5s+C4a4z+HfJULzIIFC1RSUqI777xTjz/++AnbFi5cqBdffFGbN2/W0KFDlZGRYVMtEQplR6TnV3Sc5GrvcJ307IfSTy5yxtQ1JVWmccMOW4pJdIW7Na/dr9amen3jV5vUe/CEU7bXHbG42ydCYouFU1W1V9so7amQcvraU74/Wtuk3y87fZLrq33d0p9XSXedzxQMQCTZvO/0Sa72dh+S/rJK+s7Zoa1TsGzdbxpu7LClmESX0xAfRia74sHCA6aTgBMaOKvqpOeWdZzkaq+20bQL3P015y5xAOBU72w5fZKrvU92mnWrLhgX2joFi5VTWLfX0maSbGcMtqd8+CYa4z+HzkDaue3bt2vRokXKzMzUQw895HWfyZMnS5ImTDj+wz6WGJs2bZoSExPlckoaHydYus1M7eWrY2t4OUFxpY1lH/Z/gUtY60h5oZLSenl9iElSavcsi2uEUCg+bF/ZJTaW7Y/Pis0C7b5qbTPrngGIDB6P9PZn/h2zpcTe+6s/7LwXO+U9wnHEh5GntvHU6bestN8h94EVO8w01r462mAaugFEhvpm6cNt/h2zdJvU6ENyPBwQD+J0ojH+i9hE10svvSS326358+crLc37nHTJyWZhpvaJrp07d2rx4sXKysrS1KlTLakrgqu2Udq41//jVhY4I4lj58OkvtmMgHOi1uZ6NdRUeH1Fkm59hquxtlI7175qd1XCSiT9/Gsb7RvVKdmbbPdHIGvXbCmWjtr43gIInt2HpLKj/h9n11Rg/rK7w4MTYuaTRVIs4C/iQyOSPgN2NzDaXb4vAl3TdlWhWS4AgPOt3S01+zDTU3vHlu0Id61tZqpFuzilA+zJIikW6Ew0xn8OmKgtMEuXLpUkzZ3b8VyTJSVmYvv2ia6zzjpLZWVlkqT77rtPq1atCmEtEQo7ysw0VP46NiVgj9Tg1ymYKm2Yf/fk8p2ynll7qxffq9WL77W7GiE37YpfaN/n7+mN316t7lk56p+br77Dpip79Bz1HDDa7urZJpJ+/nbMwd1epQOS3XVNppHbX26PmQ5sVk7w6wTAWp8HuH7VlhLp+uBWJSQO2/gsqG8204A5Ydqy9iIpFvAX8aERSZ8Bu78T2nkP8tWeQ4GtaXuk3rQNDOoV/DoBsFbA8aADlu042iC12ZiUt/s5FKhIigU6E43xX8QmuvbuNUN6Bg/2PmFoa2vrV0ms9omumJjQDHLLyckJ2blxouGzvqUzLv/PgI7Nn3OejpZtD3KNgmvOd19V5tBpXrf96EIpI7njYzOSjv9535WnL6e6QXri7VP//xvzb1b5jqU+1jZwsfHJuvKBwqCdb+zc25Uz/Vqv2157+LyglJGbk6O2loagnCvQ6++XM1M3PLBeG978tYo2v6Vty5/XtuXPS5L6j5yt8+94Qd36DPN6bExsvOISTvMB6kQ4XH9HnPbzP53MoTM057uveN3W2T1A8v0+0NE9YPNnW5X9nQt8rK09UnsN0UULVwZ07C/vf0g7lv0uyDUCYLXJ1zyuoVP9T1nVNrQpOzv8Fxy44j8LO3xmByse7Og5IEnjxp+hptoAehT4KZjxgBNjgWBdf1fiQ38RD1oTD47I/44mXnq/121WxIP/9+Lf9P+u+omPtbVH9vhLNGP+/wR07JXXfEMHCpcHuUYArDbvrnfUvf8Yv4/7ZN1m/eqbF4egRsGT3nu4LvjJRx1uD3U8WFJ6QNnZk32sbeCIBaKjfdDdbih1fn6+Nm7cGFC5EZvoqqszXc4bGry/qYsWLVJFRYXS09M1dOjQkNfn2CgxhF73Q4G/16Ule3WkfH8QaxN8jY0dz6uVkWwWzuxMTIxv+3lz6GCZ9u8P/XsUlxhgBTvQPStHg8bOC+o5T1ZaVqrWpuDMe9aV688cOE7n3/GCJKm6Yq/2b/9Iny/7g0p3rNDrT1yuGx5Yr9i4U7thjzpzvkadOT/gaX5EPgAArnlJREFUcsPl+r1x2s//dNwpHd/jfL0HSIHfB5oa6y25B3RFWhdiysMV5WF/fQA6l3s0sPlUWpsbHXEPaGtrUZy8f/m0Ih4s3b9PjbWhn7MmmPGAE2OBYF5/oPGhv4gHrYkHex3ueC5pK+LB2pqjYX+vTOhbGvCx5WXFKg3z6wPQuYb6GnUP5Li66rC/x3VrTTrt9lDHg63NTbQNdiCc4kEntg8eOHAg4HIjNtGVlZWlqqoqbdiwQTNnzjxhW1lZme6++25J0vjx4+VyuUJen379+jGiyyKuBtMI7PF4/PrZNtcfUXqiW6kDBoSqakHhauu4Bbe6k8bdjCTzEHO7perG0+/b0bkyUuI1wIL3KDY+8J4Ddunfr39Qe7AGQ0bmYGXMvlmj8m/Sy/85W2UFq1S+61MNGJkflPO3F47Xb6VgXv/ppKd2/Oju7B4g+X4f6OhcntY6S+4BXeGKiVNjzSElpff2+Zivnhn1pWF/fQA611IdwIKtkqoPbHfEPaC14YgSkzO8bgtWPNjRedxtrerds5vc3UL/rHZaPBDsWCBU1x/K+JB40Jp48HRTh1oRD8a7WsL+XhnXfEget1suP9th3K3NSvQcDfvrA9C5hsqd0ogZARy3K+zvAfHJp090hToebGuuoW2wA+EaD4Zz+6Db7f5qkFDfvn0DLjdiE13z5s3T9u3b9cgjj+i8885Tbq6ZXHXt2rW66aabVFFhFpmbOHGiJfUpLCxUamqYL/4UITwe6ddvSyWH/Utgnjepu54p2hmiWgXPO1uktz7zvq2j6WWOue9K01OjulG67zX/y45xSRs+flPxsf4f66+mVumeRaEvJ5gKCguVGKS7arCv3+VyKWv4dJUVrFJdVWh63YTz9VshmNd/Om639NO/e19Ut7N7gNT1+8D8K+bob/cHONm5hd7YJL231ff9XS6X+mRIGz56WRb0fwEQYo0t0r2vmueJPxZcP0X/9/Pwv8f98SOznpg3oY4HszPjtG/vbv8PDIDT4oFgxwKhvv5QxIfEg9bEg+VHpYeXeN9mRTz40C/v1Bl/uNP/Ay327IfSdj8Hdk0ZnqAnd3TwhRuAo5Qclh5/y//jnvvVLer3u1uCXp9gu/81qaqDQTOhjgfPzx+jF+4OfcxMLBAd7YN1dXVKS0uTJK1cGdgyFJIUsUOMFi5cqF69eqm4uFhjxozRuHHjlJOTo2nTpmnYsGE655xzJJ24Phcig8slzfZz0cgYlzQrJzT1CbaBPe0ru193WZLkQuD2bnlP7rZTW/Vamxu0b8u7kqSeA/KsrhaCKCZGGmDjfcDOe5A/ZuVIsX5GObNzRZILiBBJ8dK04f4dk5YkTQz/5bkk2XsvdspzAMcRH0aePulSgo3dlp1yH/C3XUCS8gM4BkB4yu4pDfN9kg9J0oi+pu3LCQb2srFshzwHolk0xn8RO6IrOztbK1as0N13362PPvpIRUVFysvL07PPPqvbbrtNw4ebb74kuiLTtGHSzgPS2j2+7X/tNKmv99lfws7gTNN42+bufN9gG9bH+jLhnxV//aEaaio1bNJlyhw4TnGJKaqpLNaOj1/UkfICjc6/WZkDx9ldTXTR8D7SnkPWl+tySUP8/KJglx6p0g0zpL987Nv+EwZJZ9KwAUSUSyZKeyukfR0vZfOVuBjp27Od06FnuI0xmb8NRrAf8WHkiYkxv4tf2LAUeLdkqVea9eUGIm+ANHe09OF23/b/2ni+8wKR5sZZ0m/e9W1a127J0vyZne8XLob1kT4rtqdsO2NR+CYa47+ITXRJ0ujRo7Vkyanj+Wtra1VUVKSYmBiNHTvWhpoh1Fwu08CZFC+tKOh4v7gYk+Sa7mePXzulJkoTBkobAlt6oktmjbC+TPhn9vwntHv9P1VasFI71y5WU/0RJaZ0U+bA8Zpy6T3Km32L3VVEEMwYLn2wVfJYXO6YAYEtVGuXKUPNiN2XVkstXqZ6PGbGcPMsiGE0FxBREuOk750jvbBS2nGaxuC0ROnbZzmrcXNYH6lPhnSw2tpyk+KlMxwy6g3HER9Gppkj7El0zRzhrBHwl51hRr+9+7lZ5sCbGJd06RnSnFHW1g1A6PVMkxacJz23TDpwmrgpq5t02xzTYdIppg6VlmyUWi3uCD84U+rfw9oy4b9ojP8iOtHVka1bt8rj8Sg3N1cpKae22L3yyiuSpG3btp3w7yFDhmjKlCnWVRRdEhMjXT1Vmj1SWlUorS+Sar9cYDHGZXr5Thtmpqlxmvxc6xNdw/s4Z/h2e9l5c3TXX06fDuhsu5MMHne+Bo873+5qhI1I/flnpkuj+vu/5kBXnemQKV7bmzREGtVP+nSP9Enh8S83Lpl76awcZ97bAPgmOUH67lypqEJaVSB9vt+s3yVJsS7p69NN4sbOKcAC4XKZe/Jr660td/pw571XkRoL+CPa48NI/QyMzTajD44Gb737TsW4TKLLSVwu6aLx0vRh0ic7pU93H3/PXC7pgnHSzOFSNwd15gLgn8x06Z6LpW2l0sqCEzsJjO4v5eeYP2MctsBPaqJ0xhBprTVLp34l34HtApEaC5xONMZ/DvsVDo4tW7ZI6njawmuvvVbXXnutXn755RP+/fTTT1tWRwRPnwzpysnSA1dLGV8mtdKTpHPynJnkkqShva0fJjxvjLXl4f9n787joyzv/f+/J/sOhAABEvaEfREERAKCxYW6b7WKWnusS0+tntaCPV2+6u9YrcvxHJfa2lqlPa0WFbV1F0VW2TdREBLWhCRAQkL2deb3xyUCkoSZycx9zz3zej4e80Bzb597Mrnvz1yf674uoGNW/01mp0tDe1t7zEBJijc9dP/zkuP3gbRE0xmCIhcQ/lwukzvdMFX67XeOXwdSEpxZuDlm8mDTyG2VuGhp+lDrjgegY9FR0rcszgcnO7gglJ4iXTROeuDKE/LBBOnC0c49JwDei4oyHQTuOPd4/tQlUbp9pjQyy3lFrmPOHe773NSdkZHqnDltEXkc+mfcOacrdHk8njZf8+fPtzBKBIOThljoiMslffcs6+aRmDTI9G4BEDoG9/Rvgm1/REdJ108Jj6H9wuU+AMB/4XIdSIg1T6RZ5ZIznDMvDxAp8nKtmzeva5IZBjAchMt9AAB6d5XOt2hWHpek6y1siwR8RaELcKgeqabBwRdV9VJlnXeTcB7TJVG6fIJvxwFgjYv9aHT05zpw4WiefAKAUDSyr+mQ5At/7gODe0pTLepcAcB7US7puinmiUtf+HMduHayGQ4WABBaZo2UstJ928af+8D0Yc6a0xaRx6EDdXTO4sWL7Q4BCIhpuVJppfRpgXfrP/G+b/tPjDOPcSfxhQYISfEx0m0zpKcWSbWN3m3j63XgzIHWD4sDAPDe1ROl8hpp1yHv1vf1PtAzTfr+tPB4qhcIRz1SpZunSc8vldxeTi/i63Xg8vGM8AEAoSo6SvrBOdKTH0oVtd5t4+t9YESf8HmqF+ErIp/oAsKFyyVdPclMRh5oyfHSv58r9ekW+H0DCJxeXaQ7Zx2fayCQJg6SrjuLxk0ACGVxMdKtM6ScXoHfd+8u0o9mOXdeWyBSjOgr/dt0KSYILTyXjZdmDA/8fgEAgdM1ybQLZARhmOmRfU2HCivnAgP8wUcUcLgol+nJe/XEwE2mPqiH9JMLpOzugdkfgODq3VX6yYVSbmZg9hcbbRo1rjuLZBYAnCAhVrptpjRzuJk/IRDOHCj9+LzjE7YDCG2jsqS7zpd6pQVmf6kJpng2kyIXADhC9xTp7gukMdmB2V+US7pgtLkXBKq9EQgmPqZAGHC5zETEw3pLC9ZI+Qf9209cjHTRWGnaUJ7gAJymW7L0w3OlVQXSvzZJDc3+7WdQD+m7Z5mhqgAAznGsk8KYbOnl1dKhKv/20yVRumaSaTQH4Cz9uks/+7b0/mfSJ9u9H8rwmyYMkK4804zyAQBwjtQEM+T0pn3S6+ulGi+nOPimvt1Mx1df5/4C7EShCwgjGanSv39L2l8urciXNu2VWtyn365nmimUTRzIBMOAk7lc0tk50vgB0vo90oqdUunR028XHSWN62eGQR3Yw+wHAOBMA3tIP79I2l4irdwpbS+WvGnrHtRDmporjc2WYqKDHiaAIImNli45Q5o+TFpdIH2aLx2tP/12CbHSpEEmH+zVJfhxAgCCw+UybQKjsqTN+027wP5y77YbnWXuAzmZdICH81DoAsKMyyX1zzCvKydIhUekwnKpqEKqbzK9+mKiTFEsO90MT9grjYZtIJwkxJri9dQc06O/8Ih5lVVLza0mYU2MM720stPNK4keuwAQNqKizHwKI/tKVfWmcaPwiFRSKTW2SB6PeZK/V5p5AiQ7XUoPwpwOAOzTJdEMOTVrpFRcKRUdMdeCo3WmM2R0lJQSb3rrZ6ebfxmaCgDCR1yM6cAwaZBpC9hfbu4FB6uOtwvEx0p9upr7QL/uzMsKZyONAcJYYpyZsydQ8/YAcBaXy/TI7dXFzLUCAIg8aYmmRy9DEQKRKTrqeMemKUPsjgYAYIeMVPMaP8DuSIDgYYp5AAAAAAAAAAAAOBKFLgAAAAAAAAAAADgShS4AAAAAAAAAAAA4EoUuAAAAAAAAAAAAOBKFLgAAAAAAAAAAADhSjN0BAEBb4qKlR661OwrfxEUHdl+cf+D2Z4VAnj8AAHBePhDoXMBp5y+RD5IPAgAQOOQCvAe+oNAFICS5XFJ8BF+hOP/IPn8AAEA+wPlH9vkDABDpyAV4D3zB0IUAAAAAAAAAAABwJApdAAAAAAAAAAAAcCQKXQAAAAAAAAAAAHAkCl0AAAAAAAAAAABwJApdAAAAAAAAAAAAcCQKXQAAAAAAAAAAAHAkCl0AAAAAAAAAAABwJApdAAAAAAAAAAAAcCQKXQAAAAAAAAAAAHAkCl0AAAAAAAAAAABwJApdAAAAAAAAAAAAcCQKXQAAAAAAAAAAAHAkCl0AAAAAAAAAAABwJApdAAAAAAAAAAAAcCQKXQAAAAAAAAAAAHAkCl0AAAAAAAAAAABwJApdAAAAAAAAAAAAcKQYuwMAcCqPR2pqtTsK38RFSy5X4PYX6e9BpJ8/AACRjlzAee9BpJ+/RD5MPgwACKRIvxdG+vlLvAe+oNAFhKCmVuneBXZH4ZtHrpXiA3hFifT3INLPHwCASEcu4Lz3INLPXyIfJh8GAARSpN8LI/38Jd4DXzB0IQAAAAAAAAAAAByJQhcAAAAAAAAAAAAciUIXAAAAAAAAAAAAHIlCFwAAAAAAAAAAAByJQhcAAAAAAAAAAAAcKcbuAIBgaWiWth2QCo9IRUekg1VSVb1ZVtUg/WmJlJ0uDegh5faSoij7AkBYcbulgkPSnsPmXlBcccJ9oF56epG5D2R3l0b0kRLj7I0XQOBV1UvbiqWicnMdKK+RahrNsuoG6S8rzHVgcE+pX3fJ5bI3XgBAYDW3StuLpX1lpl2g9Kh09IR2gT8sNveB/hnSsN5STLS98QIIvINV0s4SkwsWHjn5O+Gj70hZ6eY6MLS31DPN3lgB+I9CF8JO6VFpxU5p3W6psaXtdTwe6YsD5iVJ3ZKkKTnSlCFSaoJ1sQIAAq+2UVpdIH1aYBq12+KRtOuQeUlSXIw0YYA0LVfq082qSAEEg8dj/rZX7JQ+K5TcnrbXc3ukTfvMSzJ/+3k50oSBUjzfkgDA0cqqpU/zpdW7pLqmttfxeKQvS8xLklISpCmDpbNzpG7J1sUKIPBa3dLnRSYfzD/Y9joeScWV5rV2t/lZbqY0NUcanUWHeMBp+AqHsNHUIr33mbTkS5Ow+qKiTnp3i7R4m3T5BGnyIHr0AoDTeDzShr3S6+vbb9BoT1OLtKrAvKblShefQUM34ETV9dKr60yBy1fFFdIra6WPvpC+e5Zp6AAAOEurW/r4C+mDz81/+6KmQVr0hWlTuGisNH0oDd2AE5UelV5aJe0v933bnaXm1b+7dP0UqVeXwMcHIDhowkFYKDwi/d9K6VBV5/bT0Cz9Y7W0eZ90w9mmRxcAIPTVNUovr5a2FnV+X8t3mqHObpwqDcjo/P4AWOOzQmnBGvNUZ2ccqZWe/dg83XX5BIaxAgCnOFQl/XWlGaKwM5pbpTc3SlsKpRvPltJTAhMfgODyeKRPtkvvbPG90P1N+8qlx96VLh4nnTOMzvCAE9A3BY5XcFB6ZlHni1wn+rJEemqRVFkXuH0CAIKjul56+qPAFLmOKa+RfveRmdMBQOhbVSC9uKzzRa4TrciX/rTUPPEJAAhtRUekpz7sfJHrRHsOm3aBgwFsawAQHB6PGdnjX5s6X+Q6psVtit5vbvR95CgA1qPQBUfbVyb9cUn7c3F1xqEq05u3uiHw+wYABEZdo/T7xVJJZeD33dwqvbBM2tXOmO4AQsO63eZJrmC0P+wokV5cLrW0BmHnAICAKD1q8sGaAHZ2OKayTnr2o/bnfQUQGv650YzMEQxLv5Te2hycfQMIHApdcKz6JtPwEMxetoeqpJdX0XMjUmxbNl+vPTjD7jAA+OCVtWby4GBpbpVeXGHmbAAQekoqpX+sCe4xthdLH34e3GMAoYJ8GE7T3CrNXx7YJ3q/6Wi99NcVkjtAT4kACKxN+8zcesG0eJt/c8ACTuTUfJA5uuBYb270fWjBn14opSVKVfXSE+97t822YmndHmnSIN9jBAAEz+Z90ub9vm3jz32gpkFauF76Xp7vMQIInla3mWjc1+Fp/LkOfPSFNDpbyk73PU4AQPB8sNU80eULf+4D+8rN3D/fGul7jACCp7pBem2db9v4cw2QTCfLwT2l5HjfjgfAGhS6IkSr2zyd1NgixcdIPdOkaAc/z5dfKq3Z5ft2aYlS1yTft3t9vTSij5SS4Pu2CH0f/ekH2rn6H3K7W+Ruadazt5jZhu/401FFRTEDPRCKGpp9/0Ij+X8f2LRPOnOgNLKv79uGila3dLjavHfxMVKPVCmGS1xEaWyWympM7/ekOPMZcPLE2st3SIV+zMXiz3XA7ZFeXi3Nne3s9wxoD/kwnKi4Qvp4m+/b+ZsPvveZNLaflJHq+7ahorFFKq+WmlqlxK9ygSjuaxGlpkGqqDNPKKYlSt2S7Y6oc/65wfcnOv29BtQ0mCESr5/i+7aAEzg9H4yIQldZWZkeffRRvf766yoqKlKPHj105ZVX6qGHHtJdd92lF154QU8//bTuvPNOu0MNuMo66dN8aXWBVHXCsEtpCdJZQ6Szc/y7uNst2I8kf1NDs7R2t3TuCGuP21lF25Zo4UMzlXfdY5pw0c/aXOfJG1waMO4iXfazty2OLniOHtqt9W/9Vge+XKbq8v2KjolXUtdMZQ6apOHTb1b2iJknrT/r1uc169bntW3ZfG1bNl9X/2qJPYEHQaR+BhD+1u8JzjwMHVmy3ZmFrqp6aVWByQeO1h//eUr8V7nAECk9xb74EHwlldKKnebv5sR5TXulSVNzpYkDTWOXk7jd1ueDxRVS/kEpN9Pa43YWuYDha37odOTDx/E3EL6W7bB2moEWt7QyX7psvHXHDJSDR6UV+WZey4bm4z/PSJWm5kiTB0lJPKUStjweqeCg+QxsLTQdeI4Z1MPkg2OzndcJrrJO2rjP2mNu2CtdPM4Uy5yEe6FBPhje+WDYF7o2b96s2bNnq7S0VMnJyRoxYoSKi4v11FNPadeuXTpyxHQDHTdunL2BBsGOEumFZSc3aBxT1WDmGlj6pfRv06Whva2Pz1/lNdK2A9Yfd2W+NGM4vZ1C3cHd6/Xab85RVHSshufdpO59R6qluV6Vpfnat/VDxSamht2NC4g0Ho9ptLda/kEzNE5mF+uP7a9dh6Tnl5p5Lb+pptEMx7b0SzMs46gs6+ND8C3fIb2+oe2GwINV5qn1pV9Kt800hS+n+OKA70NYB8KKnc4rdCHy8sNIO19EprpG0+BstTW7pNljpDgHtaat3iW9subk4sYxZdXmCZWlX0q3zZD6dLM8PASZ222GYV+Z3/by3YfN69Oe0i3TnVXwXFXQ9uc6mFrd5mGC80dbe1x0XqTlR5F2vlKYF7rKysp0ySWXqLS0VPfcc4/uu+8+paaaZ8wfffRR3XvvvYqJiZHL5dKYMWNsjjawdh+S/rTE9DjqSGOLWe9Hs6SBPayIrPPW7ZEsvo9JMgW2XYeknF42HBxeW/PGA2pprNP1v9msHv3HnrK8trLUhqgABFLhEd/nYgiUtbulS8+w59i+KiyX/rDYDFPXkeZW0zHmjnNpwA83qwpMw8bplNdIz34k/eRC5zzpv2a3PcfdWmSGx2FuBmeJtPww0s4XkWnT/tPnOMFQ1yR9XiSNH2D9sf2xYY/0j9WnX6+yTnr2Y+k/LnD20Iw4mcfTcZHrRLsOSX9cIv37t5xTyPVnSpOAHHc3hS4nirT8KNLOV5IcPEvT6d11110qKirSnXfeqccff/zrIpckzZs3T2PHjlVLS4sGDBigtDQHdWE9jWNzCJyuyHVMy1cTeVv5yH9n7CuLzGPDO5Wl+UpI6d7mRVySkrvSigs43V7uA6fl8Uj/WON9A5DbY3KBVi9zB4S+mgZpoQ/z2B2tNz26ncDjse9v0ePxb14w2CvS8sNIO19EJlvbBcrtO7YvGpqlV9Z6v35No/TGhuDFA+vtPuRdkeuYvWVmNAAnOFpnz9P9kukkVtNw+vUQWiItP4q085XCuNC1fft2LViwQBkZGXr44YfbXGfChAmSpLFjj//CX3vtNV111VXq37+/kpKSNGzYMP3yl79UTU2NJXEHQn6pmWzeF4erzZBMoc7uxgWnNmy0NNWpvrqszVe46dJzsBpqylWw7nW7QwkpkfQZQPiz81pcdMT64TH8sa9cOlDh2zaVddL24uDEA+ut2eV9p6djPis0c7qFuqP1UrWNjQuFDmng/KZIzgUiLT+MtPP1ViT/DYQjW9sFHHIf+ObcnN7YdsA04iM8rPChyHXMpzYMB+gPu9vn7D6+vyL5Xhhp+VGkna8UxkMXvvzyy3K73ZozZ45SUtqeYT0x0cwceGKh6/HHH1e/fv300EMPKSsrS5s3b9YDDzygpUuXatmyZYqKCv3a4Go/H91dVRD6QxbVNNrba6LYx0bDULF64X1avfA+u8OwxKTLf6X9ny/SO09epa6ZOeqTm6degyYqa/gMpfcdbnd4tomkzwDCX0mlfcdubJGO1IT+kC6rC/zbblUBc3WFC3/ywVa3aRQ7d0Tg4wkkO68BklRs8/H9Fcm5QKTlh5F2vt6K5L+BcON2SwdtGsZacs59wJ9cwCMzVPfs8JrdIyLVNZpOTL4qr5EKDoZ++6Dt+WCFNLyPvTH4I5LvhZGWH0Xa+UphXOhavHixJGnmzPYnVSsqKpJ0cqHrrbfeUo8exyerOuecc9SjRw/NmTNHK1as0PTp0/2KJycnx7Ii2bk/ekvp/XyfQOSj5Rv1y+9eGoSIAie5+wDNnrei3eU/vVBKS2x/+7SE4//ef0X761XVS0+8f+rP9x8oVVbWmV5G67/o2ERd8aAfXW/aMWrmbcqZfE2by9747XkBOUZuTo5amwPXDdzf96B3zhRd9+AGbXz3v7V3y3vatuxFbVv2oiSpz9BpOv/2+erSc1Cb20ZFxyomroMP0GkE8j3gMwC074K5y5WaMbDNZYG6D0jt3wvOmXmejpZu9zJae0y/9R/qOSTP5+0+Xf+lHrhhVhAigtWufGiPoqJjfd7uf579i25685dBiChwssZcrLPm/KHNZae7Bkidzwffff8j/fK7N3sXbCeQCwTuPehMfuiLUDl/8uG2OfFvAG2LiUvW5f/V/vhqwW4XqG9sVVZWfy+jtc+l932uuKSuPm/3x/mv6dZX/iPg8cBaab2G6vyffuzXtv/2w7nau+7lAEcUWKMu/LmGzbyzzWVWfCd85PH/1fcWPe5ltP6L9HthIM+ffDB080G3+/hQJHl5edq0aZNfxw3bQte+ffskSf37t518tLS0aOXKlZJOLnSdWOQ65swzTWHjwIEDfsdTUlLi97a+am7xb0bWlpbWTp2jFbq2dPxHlpbo3STqUVH+Tbbudnfuc+CtmPjAzgTfNTNH/UYFt+GyuKRYLY2BGyC5M+9BRvZonX/7fElSVdk+Hdi+VJ8veV7FO5brrScu03UPblB0TNwp2w2bOkfDps7x+7iBfA/4DADta21t/z4X7PuAJB06fFhlIX6/bPJzdvZWtyfkcwF4yeVfB6u6+saQ/wwkZbX/iL231wDJ/+tAY2MT+WA7Qikf/CZ/80NfhNL5kw+fyol/A2hbXGLHj9YHPx90hfy9UpI8fuYC9Q2hnwvg9BqjM/zetqqqOuQ/AwM6mGLGiu+ENTU15IPtCOVcgHww9PPBgwf9n1spbAtdtbW1kqT6+rarhwsWLFBZWZlSU1M1cGDbvcKP+eSTTyRJw4f7/1hf7969LXuiq7XBv/H1Whsq1Ldv3wBHE1gJaV06XH66eSXSEsyNzO2WqjoYArG9/XhaGyx5j6Jj/a+a26VP7z4B77EQCGkZ/ZU27SYNy7tRr/7XNJXsXKnSXWvVd6jvTzqcTiDfAz4DQAfcze0uCtR9oKN9de+WqvjW0L5fuhv9ywVa6stDPheAdxqrDyuxi+9jzkS31oT8Z6BLavv3SG/mGOtsPhgT5SYfbEeo5oPfFKz8MFTPn3zYOuTD1nBFddyUFex2gdbm+pC/V0pSU81hxSem+bxdVGu1I84PHYv/6hLq8Xjkcrl82zaqMeQ/A4nx7V8HrPhOmJQQQz7YDqfkAuSDoZMPut3urx8S6tWrl9/HDdtCV2ZmpioqKrRx40ZNmTLlpGUlJSWaO3euJGnMmDEdXvAPHDigX//617rwwgs1btw4v+PJz89XcnKy39v7YuNe6a8rfd/uP287X2f8pijg8QSS2yP94lWpoZ02zrYeJz7R/VeY3hpVDdL9b/h+/EmjB+j5ouC/R40t0r0Lgn6YgNqZn68O8gyfBfo9cLlcyhw8WSU7V6q2Iji9bgL5HvAZANo3f7m0eX/by4J9H4iJkr7YuFzRIT5l5xcHpD8t8X27u2/I00v3hXYuAO/8a5O0eJvv2/3tqZ+qZ9pPAx9QAB2uln7zr7aXne4aIHX+OvBv11+s1x4hH2xLqOeD3xTo/DDUz598OPjIh63z4L+ksuq2lwU7HxzYO/nrqTBC2Qdbpfc+8327Pz58h7KeuyPwAcFyv/9Y2lHqW5ErOV769P0XFRsdpKACZNM+6S/tzGwS7GuAJD3x0M81Jvvn/m3sg0i/F1px/uSDgefre1BbW6uUlBRJ0ooV7U9ZdDoh3kzjv1mzzGOYjzzyiHbu3Pn1z9etW6eZM2eqrKxMkjosXtXU1Oiyyy5TXFycXnjhhaDGG0hjsqXUBN+2SUuQRjtg8vkol5SVbt/xs7vbd2x4Z9/WRXK3tpzy85ameu3f+qEkKb3vCKvDAhBA2TbeB/p0U8gXuSRpeG8p3cf+NUlx0hmhP90EvDQ1R/KtWUMamin19L3jt+UyUqQE36cfCxg7r0HwT6Tlh5F2vohMdl6LnXIfOGuIaUPxxYAMe9tcEFhTc33f5qzBCvkil2T/36Hdx4fvIi0/irTzlcL4ia558+bppZdeUmFhoUaOHKlhw4apoaFBBQUFmj17tgYMGKAPPvjgpPm5TlRfX69LLrlEe/bs0fLly9W7d2+Lz8B/MdHS5ROk//Phqa7LJ5jtnKBfulTg/3CdnT42Qtvyv/9E9dXlGjT+UmVkj1ZMfJKqywu149OXVFm6U8PzblJG9mi7wwTQCf1s7HTglPtAVJR0xQTphWWSx8ttLjlDigvbzDDydE+RZg6XFm/3bv3YaOniM4IbU6C4XOY6sLPUnuPT8cl5Ii0/jLTzRWTq19080WHXsZ2gS6J0/ijp/a3erR8TJV02PrgxwVoj+0rDektflni3fnqyNMP/WVss1T3FdNSra7L+2CkJ/s/tBftEWn4UaecrhXGhKysrS8uXL9fcuXO1dOlS7d27VyNGjNBzzz2nW2+9VYMHD5akNgtdzc3Nuvrqq7V+/Xp9/PHHGjHCedXNCQOk+iZp4bqOG7hckq6aKI0fYE1cgTB+gPeNNoGUHC8NdU69M2JNm/OEdm/4p4p3rlDBuoVqrKtUfFIXZWSP0ZmX3KsR0262O0QAnTSop/niftSGKTAmdDytZ0gZnS199yxpwRoz9G9HLj1DmjLEmrhgnYvPkBpapE/zO14vPka65Rxn9UydMMCeQtfgnjRsOFGk5YeRdr6ITOP6mWF6Pd726AmQ2GiTYznFBaPN1A9Lvux4vdho6eZp0sAe1sQFa0RHmd/rn5dK+afpMN49Rbpjpu8jRNnF5TL54PKdp1014CYMMMeHs0RafhRp5yuFcaFLkoYPH6633377lJ/X1NRo7969ioqK0qhRo05a5na7NWfOHH388cd69913NWnSJKvCDbi8XKlPV5PQbC06NQEcky3NGGYaDJ0kK908Tr+3zNrjnjXYOU+9HZM1Yobu/lvHmf/pljtN/9Hnq//o8+0OI2RE4mcA4S86Sjo7x785BzqjTzdz/3GSyYOlXl2kJdulzwpPLXiN7CudM0zKzbQnPgRXlEu6ZqKU00tavkPaffjk5XHRpng7Y7jUywFDFp7ojP7SPzda34s3z48hgOxGLhB5+WGkne/p8DcQnrolS6P6mrYOK53R33SCdQqXy4zgM6inyQW+WeyIiZbG9zdPgffuakuICLKEWOn2mdLKfPM6VHXy8pR40+HtnGHmSSUnmZprT6Frao71x+ws7oWRlx9F2vlKYV7oas8XX3whj8ej3NxcJSWd3CXzRz/6kV599VX9/Oc/V1JSklavXv31ssGDB6tHD2d1bxnU07wqaqU9h6VX10r1zVJqvPRv0+2Ozn/Th1pb6DrWqAoACA1nDZE++kJqbrXumNNzndlzb0CG6cl5tF7adfDkXODWGXZHh2BzuUyj3Bn9peIK6elF5vefFCf96jLzrxPFxZjrwOJt1h2za5Iz5rQFgEgxfaj1ha5pDuzwIJmOzmOypdKj0pMfHM8Ffnmpswp38E9MtClkTR9q2gb/tOT4Z+D+K5zXqfuYzC6mw56VT/kP6+2MOW2BSOSA6dQDb+tWM0BxW8MWvvfee5Kk3/72t5oyZcpJr3feecfSOAOpW7IZ8u/Y3BtRDv/Nn9HfTJhulfNHmce4AQChoUui9O22p9kMikE9pEmDrTteMHRJDK9cAL7r0+347z822rlFrmPOH2VyXKtcM8m5DUEAEI5yMs0QYlbJy3X+PI2ZXU7OBShyRRaXy3SGP/Ez4PTc5qqJZn45K8RGm+MBCE0R2cTRUaFr79698ng8bb5uvvlmiyNFe1wuM+9IvI/PJFbVS5V15l9vZXWTZo307TgAgOA7Z6g00MehBP25D8RGS9edZYaBAxA6EmLN36av/LkOTBxohvoEAISWK8/0fU4hf+4D3VOkS8b5dhwAwdcrzfcOkP5cAyTp4nFSj1TftgFgnYgcurCjQheco1uydN0U6S/LJW9HkX3ifd+OkRQn3TDVDF0IAAgtUVHSnLOlJz+Uqhu828bX+4BknuLowfAUQEjKzZTOGykt+sL7bXy9DvTuIl1xpm/bAACskRwv3ThVeu4TqdXt3Ta+3gfios0x4mN9jw9A8M0YJu06JH1xwLv1/flOODpLmjbU9+0AWCcim+8XL14sj8ejiy66yO5Q0Enj+pknu4LRyT4pTrrjXPNoPwAgNGWkSj8810yiHAxXnSlNGhScfQMIjG+PNXNOBEPPNOmObzl/mEcACGe5mdLNecHpoBoXLf1ghpnzFEBoioqSvpcXvClOhvWWbspjhA8g1EVkoQvhZfJg6XvTzPA1gZKRKt05S+rn8PG3ASAS9Okm/fh8M2xFoMTFSDecTa89wAlcLumKCabgFcgGiME9pbvOM/PbAQBC2+hs6bYZge381CVR+uG3TCENQGiLi5FunWGGmw6kSYOkH5xjhrMHENoicuhChJ9x/aT+3aUFa6QvS/zfj0vS9GHSRWOPT84JAAh9vdKkn31bev8zafF2yePtmLZtGNLLzPvTPSVw8QEILpdLOn+U6XH78iqp5Kj/+4qLli4+Q8rLpecuADjJ0N7Szy+WXlsnbd7fuX1NGiRdPoEnegEniYk2Q9uPzpZeXev98PZtSUuQvjNZGpUVuPgABBdN+Qgb3ZKl22dKWwql5TvM+Lzeio6SxmSbcX37MyQBADhSbLR0yRnSGf2lJV9Km/Z5P1eDJA3MkPKGmu1p3AacqV936Z7Z0qoCaWW+VOpDwSshVpo4SDpnqHm6HwDgPCkJ0s3TpO3F0tIvfesI63JJI/tK5wyTcnoFL0YAwTUm2zyZv3yH9GmBVFXv/bZdEqUpOdK0XDMHIADnoNCFsOJymae7xvWTSiqljXulwiPmVdt48rrpyVJ2uilsnTlQSmNYGgAIC1npZtjBy8dL6/dKew9LRUekspqT10uKM/eBrHRT3MpKtyVcAAEWE22GHc3LNR2fthZJheXSgQqpseX4ei6XeRo0K900hozvL8UHcChsAIB9hvcxr8PV0oa95j5QeOTUBu+uSeY+0L+7NGGAlM4T/UBYSI6XLhwjnTfK5II7Ssx3wuLKkztDRkdJfbqa74VDe5snuIIx3x+A4KPQhbDVu6t00Tjz3x6PVNckNbWYXvrxsYGd0wsAEHpSEsyTuhpm/r+xWWpoltweMzxtUpxp6AYQnlwuMxTpkK965bs9puNTS6uZtDwxlqGqASDc9UiVLhx9/P/rGqWmVvPfx/JBAOErOup4h3jJ5IH1TVKLW4qJkhLjTCcpAM7HVztEBJfL9ObgsWMAiFzxsTytAUSyKJeUmmB3FAAAOyXFS0l2BwHANjHRUiojOgFhiYcxAQAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgxdgcA4FRx0dIj19odhW/iogO/v0h+DyL9/AEAiHTkAs57DyL9/CXyYfJhAEAgRfq9MNLP/9j+Iv098BaFLiAEuVxSfIT/dUb6exDp5w8AQKQjF+A94Pwj+/wBAIj0e2Gkn7/Ee+ALhi4EAAAAAAAAAACAI1HoAgAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjUegCAAAAAAAAAACAI1HoAgAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjUegCAAAAAAAAAACAI1HoAgAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjUegCAAAAAAAAAACAI1HoAgAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjUegCAAAAAAAAAACAI1HoAgAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjUegCAAAAAAAAAACAI1HoAgAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjxdgdANAWj0dqarU7Ct/ERUsuV2D2FennL/EeAECk83gkd7PdUfgmKpb7QCBFei4Q6ecvOe89IBcEAP85MffzFjmi/yI9F3Da+UvkQ7APhS6EpKZW6d4Fdkfhm0euleID9BcV6ecv8R4AQKRzN0ufPGV3FL6ZeZcUHWd3FOEj0nOBSD9/yXnvAbkgAPjPibmft8gR/RfpuYDTzl8iH4J9GLoQAAAAAAAAAAAAjkShCwAAAAAAAAAAAI5EoQsAAAAAAAAAAACORKELAAAAAAAAAAAAjsTUcGGuoVk6cEQqPCJVNUj1TebnjS3SroNS33QpIdbeGAEAQPA0thzPBY7Wn5ALNEv5B6VscoGwV9Ngfv9FR6T6ZvOzhmZpZb75/ffpKsVE2xoiAAAIotpGkwcUfiMXWLHzq1ygmxRLLhC2PB6psk7aXy6VVJ78GVi3W8ruLvVMlaJ4HAKAg1HoCkMtrdLm/abxYu9hydPGOg3N0tMfSS5JA3pIU3Okcf1o5AAAIBy0tEpbi0zjxe7D5svtNzW0SL/7yPx3/+7S1FyTC8SRHYaFuibTcPFpvnSw6tTljS3Sq2vNf0dHScP7SHm5Um6mFOWyNlYAABB4Dc3S+j2mbaik8tTljS3Sa+vMf0e5pGG9TT44vDcFj3BRUWtywbW7TYe3b2pskf6+yvx3fIx0Rn+TD2alWxsnAAQCTRlhxO0xN7D3P5NqGr3bxiNpz2HzenODdMFok9jQwAEAgPN4PNKaXdK7W8yT3N7aVy7tW2VygfNHSdOH0sDhVE0t0vtbpeU7pOZW77ZpdUufF5lXj1TpignSiL7BjRMAAARHS6v04efS0i9NIcMbbo+0rdi8uqdIl42XxmQHN04ET3W99MYGadP+tju8taWxRVq9y7wG9pCumWie9AMAp6DQFSbKa6SXV0sFB/3fR02jtHC9tKVQuu4sk9wAAABnqKiVFqyRvizxfx91TdKbG6Ut+6Xrpkg90wIXn1W27Fqin/1h5kk/S4hLVlaPXM0af6Mun/pjRUeHZwq857D00irpcLX/+zhcLf1xiTRpkHT5BCkpLmDhAQCAINtfLr28Sio56v8+ymukF5ZJ4/tLV02UkuMDF58VIjkX9HikTftM216tlx3g27LnsPTf75sOcLNGmqf/ASDUheeVPcLsPmQaJBqaA7O/goPSY+9Kt82QBvUMzD4BAEDw7C+Xnvukc19oT7SnTHr8PekH55ih7Jxo5rjrNGnYt+WRRxXVpVq04a/6w1s/1f5D2/WTq/9od3gBt2aX9I813vfaPZ21u82wl/9+rpRO5ycAAELexr3S3z41T2cFZH/7TE747+dKPRzY+SnSckGPx3RYW/plYPbX6pbe+0zadUi6ZboUz5y+AEIcNXmH231I+v3iwBW5jmlolv6w2OwfAACErsJyM9dWoIpcxzS1SH/8RNpZGtj9WiWn73jNmnCDzptwo74zY66e+vFq9eiSpffWPq/KmsN2hxdQqwrMk/2BKnIdU1YtPb3IPC0IAABC14a90v+tDFyR65iKWpMLdOZpcbtEUi7o8Uivrw9cketEO0tNh7omL4fBBAC7UOhysPIa8ySXt/Mv+Kqp1ey/vCY4+wcAAJ1ztF76wyfez7/gqxa39PxS6WBVcPZvpcS4ZA3rf5Y8Ho+Ky3fZHU7A7CiRXlkbvP1X1NG4AQBAKNt9SPr7p2YO9mCoajAdoQPdwdpq4ZoLStKSL6XlO4O3/92Hv/qMBetDBgABQKHLoTwe6R+rfU80fnqhdP8V5l9vNDSb+T64mYW/bcvm67UHZ9gdBgDASx6P9Moa35/k8jUXaGoxcz243b7HGGpKvmrUSEtKtzmSwGho9v1JLl9//5JUetQMXQMAAEJLU4v00mrfnuTyJxcor5He2uR7fKEm3HJByeRp72z2bRt/PgNbCs1wlgAQqpijy6E+zZfyD/q+XVqi1DXJt212lkqfFkhTc3w/HgAACI71e6QvDvi+nT+5wN4yaekOaeZw349nl4bmOh2tLZPHY+ZleGvVH1RwYJOGZU9SVo9cu8MLiH9ulCrrfNvGn9+/JC3ZLo3Jlgb28H1bAAAQHO9sMUMN+8LfXGBlvjS2n3Pmb42EXNDtll5aZUZh8IW/n4GF66ScXmZ7AAg1EfFEV1lZmebNm6chQ4YoISFB2dnZuvvuu1VbW6tbbrlFLpdLzzzzjN1heq2lVfpgq7XH/OAzMxGl0xRtW6Inb3BpwzuPt7vOkze49M/HL7YwqtDy0Z9+oGdvSdHiF+9Q8Y7levaWFD17S4rc7iCNiWkxPgMAwpHbbf0TNos+d9bwdX/98D5dfX8PXfNAT932xBi9tepZ5Y26Ug/c/E+7QwuI8hppdYF1x/NIet+hT3WRCxhHD+3Wx3++TX+dO0y/+7ck/eG2bvrrvOH68A/fU+G2T+wOL2j4/QMIV0frpeU7rD3me1usPV5nhHsuKEmfH5D2l1t3vLqm4MwDFmzkArwHiAxh/0TX5s2bNXv2bJWWlio5OVkjRoxQcXGxnnrqKe3atUtHjhyRJI0bN87eQH2wtciMkWylqgZpa6E0rr+1x4Xvjh7arfVv/VYHvlym6vL9io6JV1LXTGUOmqTh029W9oiZJ60/69bnNevW57Vt2XxtWzZfV/9qiT2BAwC8tr1EOlJr7THrmqRN+6TJg609rr8umnybpo+5Ri3uZu0p2aoFSx5R2dEixcUmfL3O1t3L9Ys/zz5l25bWJrndrfrg0dDt9PFpfvDm4mjPjlLpcJXUI83iA6PTDu5er9d+c46iomM1PO8mde87Ui3N9aoszde+rR8qNjH1lBwRABDaVhf4NmRhIOwpk4qOSFkOGPkv3HNBSVoZxHm52rN6lzR7jBQTbf2xAaAjYV3oKisr0yWXXKLS0lLdc889uu+++5SamipJevTRR3XvvfcqJiZGLpdLY8aMsTla763Mt+e4K/IpdIU6GjEAIDJ8alMusDLfOYWuvhk5Gp87S5I0adhsjRqYp588m6cnF96hX97wD0nS6EHT9NZvak7aruxosX701Jm67Ow7LY/ZWy2tppHBDivzpcsn2HNs+G/NGw+opbFO1/9ms3r0H3vK8trKUhuiAgD4y+2WVln4ZPeJVuZL106259i+COdcUJIOV5tOSFarbZQ275fOHGj9sQGgI2Fd6LrrrrtUVFSkO++8U48/fvKjmfPmzdNLL72kLVu2aODAgUpLc0bX1KYWafche469+5DU3CrF0msjZNGIAQDhz+2W8m26nO8vl+qbpMQ4e47fGSMHnK1Z42/Uog1/1eV5d2nkgLNPWaeppVEP/PVKjRqQp+u/9QsbovTOgQrTyGCHnaQSjlRZmq+ElO5t5oeSlNzVIROuAAAkSYeqfZ+nM1CcmguEUy4o2ft72FlKoQtA6AnbObq2b9+uBQsWKCMjQw8//HCb60yYYLqjjh17/Avf8uXLNWvWLPXu3Vvx8fHKysrStddeq+3bt1sS9+kUV1r/aPoxbo9UXGHPsTurpalO9dVlbb7CCY0Y7YuUzwCA8HewSmqycRSVoiP2Hbuz5sz6taKiovWXD/5fm8ufXHiHmpobNPfa+dYG5qNCG38HpUedNVfbiSI5F+jSc7AaaspVsO51u0OxTST//gGEn0IL52X6pvIaqc6mDjedFS65oGRvTm5nLtoZ5AK8BwhvYftE18svvyy32605c+YoJSWlzXUSExMlnVzoqqio0OjRo3X77berZ8+eKioq0sMPP6wpU6bo888/V1ZWliXxt8fuxqXCI1L/DHtj8Mfqhfdp9cL77A4j6Lr0HKyKkh0qWPe6hky80u5wQkqkfAYAhD+7v1gWHpFyHNpvom/GEM0c+119vOnv2rp7uUYPmvb1sjdWPKU129/WM3etU0Jcko1Rnp6d+aDbYzpeDSAfdJRJl/9K+z9fpHeevEpdM3PUJzdPvQZNVNbwGUrvO9zu8CwRyb9/AOHH7nywqELKdWA+GC65oBQaHZ/iHNaqTC7Ae4Dw5rBLkvcWL14sSZo5s/35iIqKiiSdXOi69NJLdemll5603sSJEzV06FAtXLhQd999t1/x5OTkKCqq8w/QjTjvHo2Y9ZM2l/30QiktsePt0xKO/3v/Fe2vV1UvPfH+qT///x7+H21b9N9eRuu/6NhEXfFg4CYgGTXzNuVMvqbNZW/89ryAHCM3J0etzfUB2Ze/529nI0Ygz1/iMwAA7ck954ca8+1ftrnMilzg8Sf/oJveedDLaP0XF5OoP94Z+MnIrvvWL/XJ5pf1lw//nx6/4xNJ0uaCT/T8O/fqoR+8p8z0AX7vOyc3R00twb8PnP29F9VnRNv3rtN9Brz9/Uvtfwauuf7fVLLtQy+j9V+k5wKBPP/eOVN03YMbtPHd/9beLe9p27IXtW3Zi5KkPkOn6fzb56tLz0GdPk4o54NO+/0DQEcmX/87ZY+9rM1lVuQC3/vBnSrc/KZ3wXopWLnfNwUzF2xPMHLEi36xXold2q42Buoz0N7v3+ORRo6dqPqjJT5E7J9IzwUiPR9GZHC73V//d15enjZt2uTXfsK20LVv3z5JUv/+/dtc3tLSopUrV0o6udDVlu7du0uSYmL8f7tKSgJz8e9f19DusrREqauXnU6iorxf90S1dQ06cOCA7xv6KCY+sL1numbmqN+oWQHd5zcVlxSrpTEwg2T7e/6dacSIio5VTNxpWkc7EMjzl/gMAEB7+tS2/6XBilygrqHZklwgIda/+8DYwTO06LH2x3nu32u4Pnj0+NiPpUf26sG/fUe3XvyYxg6e4dcxjykpLlZDc/DvA80t7naXefsZ8Pf3L0lHq2rIB9sRCvlgezKyR+v82+dLkqrK9unA9qX6fMnzKt6xXG89cZmue3CDomM6NwFfKOeDTvv9A0BHGjsYx9qKXKCqujbguYC/ud832ZkLticYOaLHFd3uMis+A4fLK3T0oLPyQSfmApGeDyPyHDx40O9tw7bQVVtbK0mqr2+7MWjBggUqKytTamqqBg48dQbF1tZWud1u7du3T//5n/+pzMxMfec73/EphqSkJNXU1CgvL0+HDh2Sy+Xy/US+ITkpod1lVV4Uy9MSzI3M7Zaq2q+Ztbuv5MR49e3b9/QH6qToWP8LLnbp07tPQHvw+svfRoxhU+do2NQ5fh83kOcv8RkAgPakJLd/fbQiF0hKiLUkF4iLCf59oKGpTvfNv1xTRlyqy6fe2en99e7Tx5InumJj2h8l4HSfAW9//x3tq0taCvlgO0IlHzydtIz+Spt2k4bl3ahX/2uaSnauVOmuteo7NK9T+430fJBcEIBV4uPaL3JYkQukpSYHPBewIvf7pkDngu0JRo7o8rRf7AzUZ6Cj/fTo3k0pMeSD3xTpuZBEPgTfeTweeTymg0Lv3r393k/YFroyMzNVUVGhjRs3asqUKSctKykp0dy5cyVJY8aMabMAdc4553z9xNeQIUO0ePFi9ejRw6cYXC6XkpOT/X7cri2f5kuvrG17WVuPE3/T/VeY3hpVDdL9b/h+/Pt/+VOdPf+nvm/oo8YW6d4FQT9MQO3Mz1d8gP6iAnX+wWrEaEsgz1/iMwAA7Vm/R/rbp20vsyIXmPcfd2jGc3f4vqGPWpukT54K7jGWb12o3SVbdKBsp5ZsOfWm8+efbVPPbv283l/+znxFd+6BGK+8skb6tKDtZaf7DHT29y9JC19+Qf26+7etLyI9F7Di/F0ulzIHT1bJzpWqreh8r+xIzwfJBQFY5c0N0pIv215mRS7w1z8/o5xez/i3cTusyP2+KdC5YHuCkSM+8b60v7z9ZR3p7GcgyiVt+2ydYtuvtwZMpOcCTjt/iXwI9gnbj92sWbO0fft2PfLIIzrvvPOUm5srSVq3bp1uvPFGlZWVSZLGjRvX5vZ//vOfVVlZqT179uixxx7T+eefr5UrV6pfv87f4DojK93Wwyvb5uPDP4FuxAAA2Mfue7Hdxw+k8ybcqPMm3Gh3GD6zMx+MjpL6dLXv+PDPvq2LlD1ipqKiT/7619JUr/1bzXxr6X1H2BEaAMAPdudjWd3sPX6gODUXlEw+2F6hK9h6d5UlRS4A8EXYFrrmzZunl156SYWFhRo5cqSGDRumhoYGFRQUaPbs2RowYIA++OCDdufnGjp0qCRp8uTJuvDCCzVgwAA9+uijeuaZwPZY8VWfrqaBobX9qRmCJjrK3MwQumjEAIDw1yNNio8xvfus5pLUN4wKXU5lZ+NW7y5SDA0bjrP87z9RfXW5Bo2/VBnZoxUTn6Tq8kLt+PQlVZbu1PC8m5SRPdruMAEAXsqy4Mnq9vRIlRIteIIdHbMzH7S70AoAbQnbQldWVpaWL1+uuXPnaunSpdq7d69GjBih5557TrfeeqsGDx4sSe0Wuk7UtWtXDRkyRAUF7YwRY6GYaGlIL2lHifXHzulFw0aooxEDAMJflEsa2lv6rND6Yw/oISXEWn9cnKxPNzO3wunm1QiGof4PmQ4bTZvzhHZv+KeKd65QwbqFaqyrVHxSF2Vkj9GZl9yrEdNutjtEAIAPeqRK3VOk8hrrjz2sj/XHxKmGZppOaB4bjj2MfBBACArbQpckDR8+XG+//fYpP6+pqdHevXsVFRWlUaNGnXY/hw4d0o4dOzR58uRghOmzvBx7Cl15udYfs7OyRszQ3X/r+LZ/uuVOQiPGqSLtMwAgMkzNsafQlZdj/TFxqugoaUqO9MFWa4/rknS2Az8D5AJS/9Hnq//o8+0Owxb8/gGEoyiXdPYQ6a3N1h97qgNzgXCUniKN6Ct9YfHsFGkJ0uhsa4/ZWeQCvAeIDGFd6GrPF198IY/Ho9zcXCUlJZ207IYbbtCQIUM0btw4de3aVfn5+fqf//kfxcTE6Cc/+YlNEZ9sRF8zaWRlnXXH7JYkjaDXTsiL5EYMAIgkOZmmJ+/hauuOmRIvjbV3qlKcYMoQadHnktvC76Mj+pre4wAAwH6TB0vvfSa1WDi1RU4vKbOLdcdDx6bmWF/ompJjOl0BQKiJyEvT1q2m+2tbwxaeddZZevfdd/X9739fs2fP1mOPPaZp06Zp8+bNGjJkiNWhtik6Srro9CMuBtS3x0pREflpAQAg9ES5pIvHWXvM2WMYwjiUdE2Spg217nhRLvMZAAAAoSElQZo53LrjuWTahhA6hvUx05tYJTVBmm5h/gkAvojIJ7o6KnTdeeeduvPOO60OyWdnDpQ277em58bIvuZ4AAAgdIztJ53RX9q0L/jHys0MjSHrig7n67EF39PR2jIlJ3TR3Gvna0DmyFPWe2/tn/WPT34rj9utcUPO1V1XPquY6FhtKlisP7/7c9U31sjlcmnysIt0y7d/q6ivevP845NHtGj9XxQTHae42AT96LKnNKzfJJUdLdbjr3xfByv2KjY6Xn0zcnT3VX9Q15QeVr8FJ7lorMkFyyx4su+8UVIWE48DABBSLhgtfV4klRwN/rFmDJcG2pv64BuiXNJ3J0uPvis1tQT/eN+ZJCXHB/84AOAPCl0O5XKZG8xj70o1jd5vV1V/8r+nkxIvfWeyOR4AAAgtV0+Udh+Sjnp5X5d8zwWS4swX6FDIBZ5ceLu+Pfk2XTDxZi377DU9tuBm/e7udSetU3Jkj+Z/8Gv9/u6N6pbaS/9v/mV6Z/UfddnUHyk1sZt+Oecf6t19kJqaGzTvj7O0aMNfdcHEm1VwYLPe+vRZPf+zL5QYn6KPNvxNz7x5p565a62io6J1w6xfa9TAPEnSH9+eqz++PVfzvjvfhnfhuLgY6fqzpN99LLV6OWyRr79/ScpOl847tZ4IAABsFhMtXX+29NSHUnOrd9v4kwtkdgndJ7u97QjV0XpNzQ36zd+/q30Htyk+NlFdU3rqrit/r74ZZmSnNdvf1fwPfiW32y23u0XXzJir88/83mm3s0JGqnT5eOmVtd5v489nYNIg583NBSCyRGSha/HixXaHEBBdkqQ7zpWe+UhqaPZumyfe937/CbFm/10S/YsPAAAEV3K89MNvSU8vkmq97PjiSy4QFyPdNtNMdm23ippD2lm0Xr+99UNJ0rTRV+mZN+7UgbKCkxoTln/2mqaMuFTpaZmSpIvPukMvL35Il039kYb0PePr9eJiEzS4zzgdrNgrSXK5XGpxN6uhqVaJ8SmqaahURpcsSVK31F7qlnp8XJhh/SbrnyufCfYpe2VQT+mGs6W/rpQ8XszX5cvvXzJzwd02k2ErAQAIVdnp0s150p+XeTd3p6+5QHqyaRuKC9EWRG86Qnmz3rcn36ZJw2bL5XLpzZXP6IlXf6D//uESeTwePfLyDXr8jiUa1GeMSo/s1b89Nkx5o65UTHRsu9tZ6ewcqaJWWvSFd+v7+hkY1tt0tgeAUMasSw6XlS7dOcuMzRxIKfFmvwxRAwBAaMvsIv34vMB3TEmKk/79W9KAjMDu11+HKwuVntZb0dGmlcXlcqlnt346VLn/pPUOVe5Xr279v/7/zPQBp6wjSUeqSrX8s9c0efjFkqTBfcbqqmk/0Y0PD9R1D2bp9WX/ozsvf/qU7Vrdrfrnymd09sjLAnl6nXJGf9PAFeiJwft0le46z8zHAAAAQtfILOkH50ixAe6Y0jPN5JldkwK730A51hFq1vgbJJmOUIcrC3WgrMCn9eJiEzR5+Lfl+moIg+H9zvq6M5QkyeVSTUOlJKmuoUppSd0VGxN/+u0s9O2xwXnqbnSWdMs5dHoCEPpCtD8GfJGVLs37tnlM+fOizu9vVJbpqZHGk1wAADhCZhdp7relhesDM2fXsN7Sd88K3UaNzqptqNKvX7xE35kxT0Ozz5RkhjxcsfV1zb+3QBld+ujNlc/owb9dq//90Yqvt/N4PHr69X9XamI3XZF3t13ht2lsP+meVOml1VLRkc7tyyVp+jAzB1io9t4GAAAnG9FX+tlskwvsK+v8/vJypEvOkOJjO7+vYOmoI9SJT/x7u94xb6x4UlO+6tTkcrn0qzkL9MBfrlRCXLJq6it0302vKzYmrsPtrOZymTnb+nWXFqyRKus6t7+4aOniM6S8XDMXGACEOr66hom0ROmW6dLGvdK7n0nlNb7vo3uK9O0x0vgBoTEPBwAA8F5KgvS9PGlcP+mtzVJZte/76JpkeoJOGhR6uUCPrtk6UlWi1tYWRUfHyOPx6FDFfvXs2u+k9Xp27afi8l1f/3/pkb0nrVPXUK1fPH+hzh55ma4+56df/3zFZws1sPdoZXTpI0m6YOL39bs3f6zmlqavGzJ+98+7dOhooR743puKigq9gRH6dJN+coG0eJv0yXaprsn3fWSnS1dMMEMiAgAAZ+nVRbr7PGnpDunjL3yb0/2YPt3MnE+5mYGPz1d3PT1FB8ry21z2+59sCsoxX/r4IRWXFejR2z+WJLW2tujvHz+o+773usYMmq4dhev0/168VH+8Z6u6JGe0u51dhveR7r1IenuztHa393O3HeOSKZpeMcHM/wUATkGhK4y4XNKEgWb4mi9LpBU7pfyDHd/UYqOlnF6mh8awPvTSAADA6cb2MxNF55eaXGBHidTUQS4QEyUN+SoXGN4n8MPfBUq3lJ4a0ne8Ptr4N10w8WYt37pQGV2zTumFO230VfqPZ/N003n3q1tqL729+g+aMe67kqT6xhr95/MX6syhF2rOrF+dtF1m90H6YP2Lqm+sUWJ8itZse1tZPXKPF7nevEvFZQW6/+Y32+zBGyqio6TzRknnDJM275dW5Uv7yjuesyMxzgxLk5dregEDAADnioqSZg6XpuVKWwqlT/OlPYc7zgUSYqWRfU0uMCAjdDo8PfXjVR0uj42J96ojlLcdpl5d8rhWfP66Hr3tIyXEmaENCoo3q7yqWGMGTZckDc2eqIwuWSo4sEkTcs9rdzs7JcZJ10wywxmu3S2t2SWVHu14my6JpuP71BwKXACciUJXGIqKMr0vRvSVWt3SwaNS4RGpukFqaTXj6qYmmB67vbqEboMWAADwT5RLGtrbvNxu6WCVyQWq6k0uEB0lpSaaXCDTQbnAf1z1nB5bcLNeXvyQkhLSNPc7L0qS/vvVH2jKiEt19shL1bv7IH3v/Af0H7+bKkkaO3iGLj7rdknS6yue1I7CtWpoqtWKra9LkqaPvUZzvvVL5Y26QjsL1+lHT56p2Jh4JcQl6z+vf0mS9PmelXpz5dPK7jlMP35qsiSpd/pA3X/zG1a/BV6LizFP5k0aJDW1SMWV0oEj5imvVrfJB7unmM9A95TQadACAACBERMtTRhgXi2tJhcoPCLVNR7PBdKTv8oFUp3Z8dnbjlDerPfa0if0yeaX9chtHyklsevXP+/ZNVtHqku07+B29e81XAfKClRSvkvZPYZ2uF0oSI43Rc+Zw6X6JjO8dXGl1NgsuWWGJ+yVJmV1D/x8vwBgNZfH4+mgTwdgj8YW6d4Fdkfhm0euleIDVDqO9POXeA8AINK1NkmfPGV3FL6ZeZcUHboPezlOpOcCkX7+kvPeA3JBAPCfv7lf4aEdemzBzaqqK/+6I9TA3qMlndwZqqP1DlcW6frfZKt3+iAlxpvHmeJi4vX0XWskSYs3vayXFz+kKFeU3B63rjv3P3XuGdefdrtjyBH9F+m5gNPOXyIfgn342AEAAAAAAABwnOyeQ9sd4vCea573ar0eXbO06LH2nwM494zrdO4Z1/m8HQDAOg4ZqAYAAAAAAAAAAAA4GYUuAAAAAAAAAAAAOBKFLgAAAAAAAAAAADiSy+PxMJgsQo7HIzW12h2Fb+KiJZcrMPuK9POXeA8AINJ5PJK72e4ofBMVy30gkCI9F4j085ec9x6QCwKA/5yY+3mLHNF/kZ4LOO38JfIh2IdCFwAAAAAAAAAAAByJoQsBAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSBS6AAAAAAAAAAAA4EgUugAAAAAAAAAAAOBIFLoAAAAAAAAAAADgSDF2B4C2eTxSU6vdUXgvLlpyueyOAgCA8BHpuYDTzl8K7HsQ6ecv8R4AABDpIj0XiPTzBwBfUOgKUU2t0r0L7I7Ce49cK8XzaQIAIGAiPRdw2vlLgX0PIv38Jd4DAAAiXaTnApF+/gDgC4YuBAAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjUegCAAAAAAAAAACAI1HoAgAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjUegCAAAAAAAAAACAI1HoAgAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjUegCAAAAAAAAAACAI1HoAgAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjUegCAAAAoG3L5uu1B2fYHQYAAAAAAD6h0AUAAAAAAAAAAABHirE7AMAqbrfU0CxFRUnxMZLLZXdEAAAreTxSY4u5HyTEmvsBAOmjP/1AO1f/Q253i9wtzXr2lhRJ0h1/OqqoqGibo0MgfX0d9Hx1HSQfBoCI4vFIza3mlRArRZMPAwDCREQUusrKyvToo4/q9ddfV1FRkXr06KErr7xSDz30kO666y698MILevrpp3XnnXfaHWrAFW1booUPzVTedY9pwkU/a3OdJ29wacC4i3TZz962ODpr7C+XVuyUNu0zyZwkpcRLZw2RpuZI3ZLtjQ8AEFyVddKqAvOqqjc/i46SxvWT8nKlARnh3fmBXEA6emi31r/1Wx34cpmqy/crOiZeSV0zlTlokoZPv1nZI2baHWJA+Xq+s259XrNufV7bls3XtmXzdfWvltgTeJDwNyCVVUsr86U1u6S6JvOzuGhpwkBzHezbzd74AADBVd8krdtj2kYOVR3/+bDe5j4wok94dwIjFzAiLScGEFnCvtC1efNmzZ49W6WlpUpOTtaIESNUXFysp556Srt27dKRI0ckSePGjbM3UARcS6v0j9XS+r2nLqtplD76Qvp4m3T5eOmcYZaHBwCwwKf50mvrzNMLJ2p1Sxv2mtfYbGnO2VJc2GdFkeng7vV67TfnKCo6VsPzblL3viPV0lyvytJ87dv6oWITU8PqS32knS865vFIi76Q3tsifeMyqKbW450Azh4iXTWRnv0AEI52lkovLDMj3HzTlyXmlZ0u3TpDSku0PDxYhBwRQLgL6yadsrIyXXLJJSotLdU999yj++67T6mpqZKkRx99VPfee69iYmLkcrk0ZswYm6NFILnd0l9XSp8VdryexyO9scE0gM4cbk1sAABrrNwpvbru9OttKZQal5kv9zTyhp81bzyglsY6Xf+bzerRf+wpy2srS22IKngi7XzRsfe3Sh9sPf16nxaYwtecKeH9hCsARJr8g9Jzn5hOXh0pPCI9vUj6jwuk5HhrYoO1yBEBhLuwbs656667VFRUpDvvvFOPP/7410UuSZo3b57Gjh2rlpYWDRgwQGlpaTZGikBbVXD6IteJ/rlRKqkMWjgAAIuVVUuvrfd+/S9LpGU7ghcP7FNZmq+ElO5tfqGXpOSumRZHFFyRdr5o357D3hW5jlm/xzzlCgAIDy2t0l9WnL7IdczhaukNH/JnOAs5IoBwF7aFru3bt2vBggXKyMjQww8/3OY6EyZMkCSNHXvyRX7Pnj269NJLlZqaqm7duummm25SeXl50GMOppamOtVXl7X5Cjcejxl32lcr/dgGABCaVuab+4EvVuw8dYjDcBJJucCJuvQcrIaachWse93uUCwRaefri0j7GyAfBoDItnm/VNPg2zab9kvVPm7jJJGWC5yIHBFAuAvboQtffvllud1uzZkzRykpKW2uk5hoBh8+sdBVXV2tmTNnKj09XS+//LLq6+s1b948XXzxxVq5cqWifJid0+PxqK6uTpKUlJQkl43jgKxeeJ9WL7zPtuNbaW+ZVHLU9+3W7ZEuGS/Fh+1fBQBEhpZWac0u37crrzFzGAzrHfiYQkEk5QInmnT5r7T/80V658mr1DUzR31y89Rr0ERlDZ+h9L7hN25xpJ2vLyLpb6C20TRw+mpPmVRcIfXpFviYAADW+jTf921a3dLaXdK3RgY+nlAQSbnAN5EjAgh3Ydukv3jxYknSzJntT6RYVFQk6eRC1x//+EcdOHBAy5YtU79+/SRJWVlZOvvss/Wvf/1Ll19+udcx1NXVfV1k6927t09FsujYRF3xoB9ZSTtGzbxNOZOvaXPZG789r9P7z83JUWtzfaf3EwgDJ12vCVc96vN2jS3S2DOnq6ZsdxCiAgBYJbFLb130Cy8m52rDHT+5TwUr/hzgiPwT6blAoM6/d84UXffgBm1897+1d8t72rbsRW1b9qIkqc/QaTr/9vnq0nNQp48jBfY98Pf8O3O+UdGxionzfxb6UP0MHBPsvwEpdHLiblnj9K0fv+3XtlfO+aGKPnsrwBEBAKx2yf/bqvhk33suPP38K/reqz8NQkS+i/RcIJDnb1VOHCq5EABnyszM1Pr1/o2jG7aFrn379kmS+vfv3+bylpYWrVy5UtLJha63335beXl5Xxe5JGnKlCkaNGiQ3nrrLZ8KXScqKSnxaf2Y+CS/jtOerpk56jdqVkD3eaLikmK1NNYFbf++6F7jfxzlFUdVduBAAKMBAFitS0uC39vW1DboQIjcByI9Fwjk+Wdkj9b5t8+XJFWV7dOB7Uv1+ZLnVbxjud564jJd9+AGRcfEdfo4gXwPOnP+/p7vsKlzNGzqHL+PG8qfASn4fwNS6OTEnpSBfm97tLo2ZK6DAAD/uaJj/dqusbk1ZO4DkZ4LBPr8rciJQyUXAhB5wrbQVVtbK0mqr2+7F8GCBQtUVlam1NRUDRx4/Ivgtm3bdM01p/buGDlypLZt2+Z3PP480eUkfXr3CZkeG4mxXs60egKPxyOXy6UuSTGK79s3CFEBAKwSmxjv97YJMa3qGyL3gUjPBYJ1/mkZ/ZU27SYNy7tRr/7XNJXsXKnSXWvVd2hep/cdyPcgUOcfzPP9Jqd8BoIpVHLi1KRoScdzXF8kxylkroMAAP8111UoLqHtqTw6Eu1uCJn7QKTnAsE8/2DliKGSCwFwpszMTL+3DdtCV2ZmpioqKrRx40ZNmTLlpGUlJSWaO3euJGnMmDEnffmrqKhQ165dT9lfenq6duzY4Xc8+fn5Sk5O9nr9xhbp3gV+H85yO/PzQ2Zuq7om6f7XpaZW77dxuVwakCEVbN8QvMAAAJZ59mMz35YvoqOk915+XKkJjwcnKB9Fei4Q7PN3uVzKHDxZJTtXqrYiML2WA/keBPr8g3G+3+S0z0AwhEpO7PFIj7wjlR71rciVFCd9+sFfFRcC5wAA6Jx/bpQ+2e77dv973/c15NnvBz4gP0R6LmDF+Qc6RwyVXAhA5PH+ESOHmTXLPIr8yCOPaOfOnV//fN26dZo5c6bKysokSePGjbMjPARRUpw0wY/RWvJyAx8LAMAe/lzTx/WTUv0f9RAhat/WRXK3tpzy85ameu3f+qEkKb3vCKvDCppIO1+0zeXy7zo4ebAocgFAmDg7x/dtMrtIg3sGPhbYjxwRQLgL268x8+bN00svvaTCwkKNHDlSw4YNU0NDgwoKCjR79mwNGDBAH3zwwUnzc0lSt27dVFlZecr+jhw5ovT0dIuiR2edO0LavE+qb/Zu/axu0th+p18PAOAMI/tKAzKkvWXerR8fI80aGdyYYI/lf/+J6qvLNWj8pcrIHq2Y+CRVlxdqx6cvqbJ0p4bn3aSM7NF2hxkwkXa+aN/EgdLyHdLBKu/WT0mQzhkW3JgAANbpkSpNGSKtKvBufZeki8aazhIIP+SIAMJd2Ba6srKytHz5cs2dO1dLly7V3r17NWLECD333HO69dZbNXjwYEk6pdA1fPjwNufi2rZtm6ZPn25J7Oi8HqnSrTOkPy6RGk5T7MrsIt06U4qNtiIyAIAVoqOkH5wj/X6xdKCi43XjYqRbzpF6d7UkNFhs2pwntHvDP1W8c4UK1i1UY12l4pO6KCN7jM685F6NmHaz3SEGVKSdL9oXHyvdNlP6/cdSWU3H6ybHS7fPkLoGds57AIDNrp4o1TRIW4s6Xs/11bqjsy0JCzYgRwQQ7lwej8djdxBWq6mpUVpamlwul6qrq5WUdPwb3eOPP65f/OIX2r17t7KysiRJa9as0VlnnaXXX39dV1xxhdfHqa2tVUpKytfHDOc5uh65ViE5Bm/pUen9z6TPCiX3Nz7pCbHSpEHShWPMcIcAgPDT0Cx9sFVas8vM4Xgil0sanSVdMFrq282e+DoS6bmA085fCux7EOnnL/EeBEpNg/TuZ9KGPeY9PVF0lBm2dfYYKSPVnvgAAMHldktLvpSW75Qqak9dPqiHdN4oaXgf62M7nUjPBSL9/AHAFxF56fniiy/k8XiUm5t7UpFLkm677TY9/fTTuuyyy/TAAw+ooaFB8+bN06RJk3TZZZfZFDH8ldlFunmadLRO2rxfeneLSRQSY6X7r+TmCwDhLiFWumy8acT9rFB6da25DyTESvdeJHXzvg8KADhSSoL0nUnSpWeYob3f2HD8OvjLS5mbEADCXVSUmd5hxjBpe7H015XmPhAfI919vtQnBDt8AQDgqyi7A7DD1q1bJZ06bKEkpaWlafHixerdu7e++93v6gc/+IHOPvtsvf3224qKisi3Kyx0STJzDiTEmv+Pi6HIBQCRJC5GOnPg8ftAfAxFLgCRJSFWOmvIyddBilwAEDmioqSRWcfvAwmxFLkAAOEjIpv6Oyp0SdLgwYP19ttvWxkSAAAAAAAAAAAAfBSRjyidrtAFAAAAAAAAAACA0BeRT3QtXrzY7hAAAAAAAAAAAADQSRH5RBcAAAAAAAAAAACcj0IXAAAAAAAAAAAAHIlCFwAAAAAAAAAAAByJQhcAAAAAAAAAAAAciUIXAAAAAAAAAAAAHIlCFwAAAAAAAAAAAByJQhcAAAAAAAAAAAAciUIXAAAAAAAAAAAAHIlCFwAAAAAAAAAAAByJQhcAAAAAAAAAAAAcKcbuANC2uGjpkWvtjsJ7cdF2RwAAQHiJ9FzAaecvBfY9iPTzP7a/SH8PAACIZJGeC0T6+QOALyh0hSiXS4rntwMAQMSK9FyA84/s85d4DwAAiHSRngtE+vkDgC8YuhAAAAAAAAAAAACORKELAAAAAAAAAAAAjkShCwAAAAAAAAAAAI5EoQsAAAAAAAAAAACORKELAAAAAAAAAAAAjkShCwAAAAAAAAAAAI5EoQsAAAAAAAAAAACORKELAAAAAAAAAAAAjkShCwAAAAAAAAAAAI5EoQsAAAAAAAAAAACORKELAAAAAAAAAAAAjkShCwAAAAAAAAAAAI5EoQsAAAAAAAAAAACORKELAAAAAAAAAAAAjkShCwAAAAAAAAAAAI5EoQsAAAAAAAAAAACORKELAAAAAAAAAAAAjkShCwAAAAAAAAAAAI4UY3cAaJvHIzW12h2F9+KiJZfL7igAAAgfkZ4LOO38pcC+B5F+/gAAAORDAABvUegKUU2t0r0L7I7Ce49cK8XzaQIAIGAiPRdw2vlLgX0PIv38AQAAyIcAAN5i6EIAAAAAAAAAAAA4EoUuAAAAAAAAAAAAOBKFLgAAAAAAAAAAADgShS4AAAAAAAAAAAA4EtMjIuw1tUgHKqRDVVJjy/GfFVdIvbpI0ZR7ASCsud3SoWpzLzjxPrD7kNQ3ncmiAYS/VrdUelQqqTz5OrivTOrTTYqNtjU8AECQeTzSkVqp6Ii5/kvm3x0lUla6lBxvb3wAAHQWTTsIS9UN0uoCaeM+6eBRye05eXl9s/Tou+ZLfb/u0uTB0rh+Uhx/EQAQFlpapS37pdW7pH3lx7/QH1PfLD21SHK5pF5p0hn9pbOGSF0S7YkXAAKtsUXauFdau0sqPCK1uE9eXt8s/c8HUpRL6tNVmjBQmjSIxk4ACBduj7SzVPo0Xyo4KNU1nby8vln6/WLz3+nJ0qgsaWqO6RAMAIDT0KyPsHK0Xnp7kylwtbpPv35zq7TrkHm9uUGaNlSaNZJerQDgVC2t0ifbpaVfSjWNp1/f4zFPObz3mfTBVmlsP+my8VLXpODHCgDB0NgifbhVWpkvNTSffn23RyqqMK93t0hnDpQuGiulJAQ/VgBA4Hk80ro90oefS2XV3m1zpFZatsO8cnpJl46XstODGycAAIFEoQthweORNuyVXl9/ai8lb9U1mUbOLful686S+mcENEQAQJAVHZFeWm2GpvWH2yNt2idtL5YunyBNHmSe+AIAp9h1SHp5lVRW49/2za3SqgJpa5F0zURT/AcAOEdlnfTKGmlbsf/7yD8o/c/7phPw+aOkGDoCAwAcgNmJ4Hitbunl1dLfPvW/yHWi0qPS/34ordzZ+X0BAKyxdrf0xPv+F7lO1NAs/WO19NeV5gkxAHCCxdukZxb5X+Q6UU2D9OJyaeG6U4cABwCEpt2HpEfe6VyR6xi3xzwR9tQic08AACDUUeiCo7nd0v+tNA2cgeTxSK+uM0NfAQBC26oC6aVVgW+M3bTPNPR6MxQuANjpg63SvzZJga5JLd8pLVhDsQsAQt2ug2a+rfoAdP490f5y6ZmPKHYBAEIfhS442hsbpc37g7j/DaahEwAQmr4oMsOzBG3/B6RX1gZv/wDQWasLzDyDwbJml/TeluDtHwDQOQePSn9cYoafDYbSo9KfltD5CwAQ2pijC461o0RavsO3bX56oZSWKFXVmyGuvPHqWmlQT6lLou8xAgCCp7ZR+sca355g8Oc+sGaXNDpLGpXlV5gAEDTlNdLrG3zbxp/r4EfbpJFZ0gDmsAWAkNLqlv6+Smps8X4bf+4D+8qlRV9IF472L04AAIKNJ7rgSMfmT/FVWqLUNcn86626JlPs8jBkCwCElIXrpGofh1Hx5z4gmafGaht92wYAgsntMflwkw+Nm5J/10GPxwwR6+uxAADBtWS7GV7QF/7mwx9ulQ4EYD5cAACCISIKXWVlZZo3b56GDBmihIQEZWdn6+6771Ztba1uueUWuVwuPfPMM3aHCR8s2yFV1Fl3vM+LzMSuTlVZJ72/VZq/3Aw58NIqc05uhh4AIoLbI20vll5eLT2/1Mw79e4WqaLW7sj8V1gubbRwaNmqBumT7dYdDwBOZ/sBKf+gdcc7VCWt3mXd8QKtvsmMBvGXFSYf/r+V5oldindA5NhfbjpK/Xmp9MIyM1VBsYMLN/VNZo5Gq7g90tubrTseAAC+CPuhCzdv3qzZs2ertLRUycnJGjFihIqLi/XUU09p165dOnLkiCRp3Lhx9gYaJEXblmjhQzOVd91jmnDRz9pc58kbXBow7iJd9rO3LY7OP61u6dN864+7Il8a3Mv643ZGTYP02jrps8JTJxFfu1vqlizNHiNNGmRPfACCb+Ne6Z0tZnirb1r0hTSqr3T1JOcNz7rChvvA6gIzXEtMtPXH7oxwzAV8dfTQbq1/67c68OUyVZfvV3RMvJK6Zipz0CQNn36zskfMtDvEoOH3H77suA6u2ClNy5VcLuuP7a+WVumtzdKqglOLWhv2Sv/cKE0fJp0/Sopy0HkB8N6ew9Lr66XCI6cuW/qlNLCHdNWZUla69bF1xro9UlOQ5uVqz5fFUlm1lJFq7XE7i3wIAMJfWBe6ysrKdMkll6i0tFT33HOP7rvvPqWmmrvxo48+qnvvvVcxMTFyuVwaM2aMzdHCW9sOmCeUrPZZoRnD2tfH++1ytF56epFJQttTUWue7jpaJ503yrrYAFhj6Zemp2p7PB5pa5FUVCH9eJaUnmJdbJ1R12gKeFaraZQ275fOHGj9seG/g7vX67XfnKOo6FgNz7tJ3fuOVEtzvSpL87Vv64eKTUwN60IXwlNZtWlstNqhKvMUWW6m9cf2R3Or9MdPOn7yra5Jev8z6eBR6cazpaiIGPMEiBzbi6U/LzNF7/bsOWy+O98+08zP7QQej+l8YPlxJa3Mly4bb/2xAQDoSFgXuu666y4VFRXpzjvv1OOPP37Ssnnz5umll17Sli1bNHDgQKWlpdkUJXz1xQF7jtvqlnaUSBMd8PST2yM9v6TjIteJ3tki9UiTxvULalgALLTtQMdFrhNV1Ep/XCLN/bYU7YAGvvyDpvHSDtsOUOhymjVvPKCWxjpd/5vN6tF/7CnLaytLbYgK6Jztxaax0Q7bDjin0PXqWu+Hd9y0T+qRKn371MsEAIc6XGWG7O6oyHVMY4v0p6XSvReZ+atCXXmN6Xxgh20HKHQBAEKPA5qz/LN9+3YtWLBAGRkZevjhh9tcZ8KECZKksWOPf5s5VhibNGmS4uPj5XLSuBwRoqiN4Qas0tZQB6Hoy2LfY130uekVBiA8LPrCt/VLj0pbC4MTS6DZeS12yn0Ax1WW5ishpXubRS5JSu7qkBZ74ARcB0+votYM6+WLpV9KDc3BiQeA9ZZ+6ds8fPVN0kobnpLyh53X4kNVUiPXSgBAiAnbJ7pefvllud1uzZkzRykpbY/FlJhoxqA7sdBVUFCghQsXauLEiYqLi9PKlSstiTfYWprqVF9dZncYndbSKpUcte/4dhbZfOHPEAYHKqS9ZWZ8cgDOdqDCDMHiqxX50rj+gY8n0Oy8Fh+uNo2gCbH2xeCvcMkFfNWl52BVlOxQwbrXNWTilXaHY5tI/f2HKzuvg0VHzOgBoT6f1af5vnfiamyR1u+R8nKDExMA6zQ0+17slqRVu6QLHDAnq52FLo/M9w2nDPN4IvIhAAhfYVvoWrx4sSRp5sz251woKiqSdHKha/r06SopKZEk3X///WFT6Fq98D6tXnif3WF0WlW9GULQLhW19h3bWx6P9GWJf9tuL6bQBYSD7X7O21Lw1ZCAsSH+xd7ua3FlnZTZxd4Y/BEuuYCvJl3+K+3/fJHeefIqdc3MUZ/cPPUaNFFZw2cove9wu8OzTKT+/sNVhQ3z1R7T2CI1NElJ8fbF4I3tnciHKXQBzrfnsLle+aqmwcxfOyAj8DEFkt35sJ33oc4gHwKA8BW2ha59+/ZJkvr3b7trektLy9dFrBMLXVFBmn04JyfHp31HxybqigfzA3b8UTNvU87ka9pc9sZvz+v0/nNzctTaXN/p/ZxOSsZAXTh3ebvLf3qhlJbY/vZpCcf/vf+K9terqpeeeP/Un5ccPKysrDO8jNYenfns/O4Pf9Ztb5H0AU436oJ7NezcH/u17bCR49RYE9q9HC+ct0Ip3Qe0uSxQ9wGp/XvBrPMuUGWxj2ND+iHSc4FAnX/vnCm67sEN2vjuf2vvlve0bdmL2rbsRUlSn6HTdP7t89WlZ2Am4Azke+C0379kXT4I6fL/yldMXNsXu2Dnw5I0euwZaqzx49FhC104d4VSMgb4vN2S5av1wA1XBz4gAJbKGnOxzprzB7+2veqa63Uwf1mAIwqsKTf+SX1HzW5zmRX58F3/8VPtW/+Kl9H6j3wIACJLZmam1q9f79e2YVvoqq013Vvq69u+uSxYsEBlZWVKTU3VwIHBn1X+2FNi3oqJD+zsp10zc9Rv1KyA7vNExSXFamkMfpeetKaOx4pKS/Ru4tioKP8mmG1uatCBAwd839BCLpf/xdrKIwdD/vwAnF6fslK/ty3cW6DmxtB+fLWpsaHdZcG+D0hSSXGRjlhwrYz0XCCQ55+RPVrn3z5fklRVtk8Hti/V50ueV/GO5Xrrict03YMbFB0T1+njBPI9cNrvX7IuH4TU2tLUbqHLiuvggaJ9aqyt8G9ji9TXHlWKH09k1FYdIR8GwkBcjyK/ty05sE8lIX4dqK2paneZFfeB8sPWtB2QDwEAvBW2ha7MzExVVFRo48aNmjJlyknLSkpKNHfuXEnSmDFj5HIFf4D53r17+/xEl5P06d3Hkh4rMXEdN0JVnSaEtASTzLndUlX77aTt7qeloVJ9+/Y9TZT2O1K4WenZ43zerrlilyPOD0DHWqp2S5I8Ho9P97iqgzvVM6OrpK5BiStQ3I3tT9YYqPtAR/vqmhKrRAuulZGeCwTr/NMy+itt2k0alnejXv2vaSrZuVKlu9aq79C8Tu87kO+B037/knX5IKTmugrFJ7U9hmqw8+HWlkb1SE+Tx9/WUYtUH/xCPfqPPf2K31B3+EvyYSAMRDWUyN3aoqho35q9WprqFe+uCPnrQJS7/Yu9FflwcpzHkveIfAgAIktmZqbf24ZtoWvWrFnavn27HnnkEZ133nnKzTUDra9bt0433nijysrMsEzjxo2zJJ78/HwlJyd7vX5ji3TvgiAGFGA78/MVb9Gn6Tf/kg5Xt72sveFVjrn/CtNjqapBuv8N3489e/po/WWe/z3DrLJml/Tyat+26ZokrXr/z4oOzuidACzk9kgPvSWVVfvWkeP7F+XqhZ+G/jXu9fXSsh1tLwv2faBLorTry82+b+iHSM8Fgn3+LpdLmYMnq2TnStVWBKZHciDfA6f9/iVr88FIN3+5tHl/28uCfR0c0DNehfv3+r6hxQqPSP/9nm/bRLmkV579qbom/TQ4QQGw1IvLpC2Fvm2TNzxRzxRsC05AAdTRd/5g3wckael7Lyklwb9tfUE+BADwVtg2ac+bN0/du3dXYWGhRo4cqdGjRysnJ0eTJk3SoEGDdO6550o6eX4uOEN2emQe2xdn9JdSfUw6p+WKIhcQJqJc0jlDfdsmMU46M/gj+QZElp33ge72HRv+2bd1kdytp85G39JUr/1bP5QkpfcdYXVYQKfYeh10SD6cnS4N6uHbNuP6+T+MF4DQM32Yb+u7XFJebnBiCTQ7r8XdkmRJkQsAAF+EbbN2VlaWli9frosuukgJCQnau3ev0tPT9dxzz+mdd97Rzp07JVHocqIc/59g7LQhvew7ti/iYqQfnGP+9caYbGnm8ODGBMBaU3OlCQO8WzcmSvrBdFPscoIhPaXgDzrczrEdch/Accv//hP9+a5sffzn27Xlw2f0xdIXtPr1B/T3X4xTedHnGp53kzKyR9sdJuCTHBuvRU66Dn4vzzTIeqNPV+maSUENB4DFBveULj3D+/WvmWhvRwJf9OpiX7FpiI1tMgAAtCesH6YdPny43n777VN+XlNTo7179yoqKkqjRo2yITJ0xvj+0psbzCPsVhrSyySTTtE/Q/rxLOnF5dKR2rbXcbmks4dIV55pxugGED6iXNKcKeYL8PIdZjjDtnRNMg2BA33s9W6n9BRpeB9pW7G1x42NliY65Kk3HDdtzhPaveGfKt65QgXrFqqxrlLxSV2UkT1GZ15yr0ZMu9nuEAGf9esuZXWTiiqsPW5Kgukg5RRdkqS7LzD58L6y9tcb1lu6aapzOnwA8N65I0wH0H9tkpraaUNIiJWunuic0Q0kMxrLlMHSoi+sP/bUHOuPCQDA6YR1oas9X3zxhTwej3Jzc5WUdGoXv9dee02StG3btpP+f8CAATrzzDOtCzQAskbM0N1/a6d18yunWx5q4mOlSYOk5TutPW6eA5O57O7Sry41jcGf5kvbSySPxzSAf2uEdHaO1M37qeMAOExUlHTFBPPE5qoCact+6eBRySPzFNeNU6VRWc4ctjQv1/pC1/gBUnK8tccMhHDMBXzRf/T56j/6fLvDsE2k//7D1bHhtf6xxtrjThksxURbe8zO6pok/cf50t4yacVOaeO+4/nwWYPNE9B9u9kdJYBgyvtqpIP1e6S1u6WiIyYfjnZJV08ynWnjY+2O0ndThkgfbTPXNKtkpUv9HTiUN/kQAIQ/BzZtdd7WrVsltT9s4TXXXKNrrrlGr7766kn//8wzz1gWIzo2Y7j3w/IFQp+u0mgH9V49UVSUaci+baaU9tXQBqkJ0kXjKHIBkaJrkjR7jPTzi6W0RPOz5HhpbD9nFrkk0/veyi/ZMVGmRzAAhIrxA6SMVOuOlxQnTfNx/sdQ4XKZJ5dvnHpyPvydyRS5gEiR+NU17J7Zx/PhlARTLHJikUsyoxxMHmTtMS8cba6pAACEGoc2b3XO6QpdHo+nzdf8+fMtjBId6Z7i21jbnRHlkq6f4tzGYAAIR1FR0nVTTAHKCt8eK/VKs+ZYAOCNuBjp+rOsm7PwyjOPNw4DAELDZeNNpzYrTBhgOtECABCKIrLp/nSFLjjD2TlSro+ToFbVS5V15l9vnTfKORPSAkAkyexiClC+8Oc+MDBDmjHMt+MAgBUG9ZTO8fH65M91cHSWaeAEAISWxDjp2sm+dXrw5z6Qlmg6PAAAEKoico6uxYsX2x0CAiDKJd2cJz3zkVRc6d02T7zv2zHOHChdMNrn0AAAFpk5XDpcbeYg84av94GeadIt55gnyAAgFF1yhnSkVvqs0Lv1fb0O9u8u3XA2Q1UBQKga3ke6aqL02jrv1vf1PpAYJ90x05lz1QIAIgfNNnC0pHjp378lZQfhiatJg6TrzjIFNQBAaHK5pGsmSXk5gd93767Sj2aZ+RsAIFRFR0k3TZXG9Qv8vgf1kO4417nz1wBApMjLla6eGPjhbFPipR99S+rDfIYAgBAXkU90IbykJEh3nie9vUlavrPz+4uLMfN/nZ1DkQsAnCDKZXqxZnWX3twgNTR3fp9Thpg5DxJo3AXgADHRptjVP0N6d4vU3Nq5/blc0sxh0uyxUmx0YGIEAARXXq7UI1X6x2qpoq7z+xuaKX33LKlbcuf3BQBAsFHoQliIjzGNnGP6Sa+ulQ5V+befob2l70ySuqcENj4AQHC5XNJZg80X8tfWSV8c8G8/3VPME2LDegc2PgAItqgoM5zriL7SK2ukXYf820/vrma+lwEZAQ0PAGCBob2ley+W/rVJWl0guT2+7yMpzgyLe9Zghq0FADgHhS6ElZxe0s8vlnaWSit2moZOz2kSu/gYMxfX1BwexwcAp+uWLN06Qyo9Kq3Ml9btPv0TXi6ZuQ3yck2Bi/m4ADhZrzTpx+dJheXmOrhh7+mf8IpySWOypam50pCeNGwCgJMlxJoOvBeMklbtklblS0frT79dv+4mHx7Xz4x0AwCAk3DrQtiJcpmGymG9TePmgQrzRf9gldTcIrmipIQYU9TKTpcyu5jhXgAA4SOzi3TVmdLl403Rq/CIVFwh1TdLHrcUGyP1TDP3gax0higEEH6yu0vf7W7mbCmuNNfBkkqpsVnyyDRi9kozDZt9upnOXwCA8NElSbpwtHT+KKm82twHCo9ItY1Sq9sMTZuebHLh7O5SKvPSAgAcjK8zCGsJsdLgnuYFAIg80VFS327mBQCRKCbaFLP6dbc7EgCAHaJcUo808xo/wO5oAAAIDgbnAQAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjUegCAAAAAAAAAACAI1HoAgAAAAAAAAAAgCNR6AIAAAAAAAAAAIAjxdgdANoWFy09cq3dUXgvLtruCAAACC+Rngs47fylwL4HkX7+AAAA5EMAAG9R6ApRLpcUz28HAICIFem5AOcf2ecPAABAPgQA8BZDFwIAAAAAAAAAAMCRKHQBAAAAAAAAAADAkSh0AQAAAAAAAAAAwJEodAEAAAAAAAAAAMCRKHQBAAAAAAAAAADAkSh0AQAAAAAAAAAAwJEodAEAAAAAAAAAAMCRKHQBAAAAAAAAAADAkSh0AQAAAAAAAAAAwJEodAEAAAAAAAAAAMCRKHQBAAAAAAAAAADAkSh0AQAAAAAAAAAAwJEodAEAAAAAAAAAAMCRKHQBAAAAAAAAAADAkSh0AQAAAAAAAAAAwJEodAEAAAAAAAAAAMCRKHQBAAAAAAAAAADAkWLsDgBt83ikpla7o/BeXLTkctkdBQAgXDjtPigF/l7otPcg0s9fCux7EOnnDwBApCMX4D0AAHiPQleIamqV7l1gdxTee+RaKZ5PEwAgQJx2H5QCfy902nsQ6ecvBfY9iPTzBwAg0pEL8B4AALzH0IUAAAAAAAAAAABwJApdAAAAAAAAAAAAcCQKXQAAAAAAAAAAAHAkCl0AAAAAAAAAAABwJApdQITweMzr2H8DiDxurgMAgAjHfRCIbHwvBgAgPMXYHQCA4GhplT4/IO0+JBUekQ5USE0tZllVg/T/vSlld5ey06XR2VKvNFvDBRAEZdXSZ4XS/nKp6IhUVnN8WVWD9L8fmGvAwB7mOhAbbV+sAAAEmtsj5ZdKO0vNfbDwiFTXZJZVNUi/Xmjug1np0vA+0oAMyeWyN2YAgVXTIG3eL+0rl4rKpYNV5togmevAo++a60D/7tK4flJSvL3xAgAA/1DoAsLM0TppxU5p1S6T1LfnSK15bdkvvb1Zys2U8nKl0Vl8wQeczOORth2Qlu+UvizpeN29Zea1fKeUHC9NHixNy5W6JVsTKwAAwdDQLK0ukFbmS4er21+vukHaVmxeH34u9e0mTc2RJg2SYuj8ATjavjJp+Q5p036p1d3+esUV5rVml/TGBmn8AGn6UHM9AAAAzkGhCwgTHo+0epf05gapscX37Xd+1ds1N1P67mQpPSXwMQIIrso66ZU1psHOV7WN0uJtplB+yThpaq4URdEbAOAwO0qkf6yWKup83/ZAhfTKWmnZDun6KVK/7oGPD0BwNTZLb22SVuT7vm1zqyl4rd0tzRgmzR4jxdFqBgCAI3DLBsJAbaP0fytP//SGN3aWSo+8I10zSTpzYOf3B8Aam/ebhr2G5s7tp6lFWrjeDHl4U56UmhCY+AAACKZWt/T6evMUV2eVHjXD+543SrpwNKMdAE6xr0z660qpvOb063bE45E+2S59cUC6OU/qw9NdAACEvCi7AwDQOdX10jOLAlPkOqaxRfrbp9KSLwO3TwDB82m+9JflnS9ynSj/oPTUh+YpMQAAQllLq/TCssAUuY5xe6QPtkoL1hyfzwdA6MovlX73ceeLXCc6VCU985EpoAEAgNBGoQtwsPom6fefSCVHg7P/NzdIqwqCs28AgbF+jxlmKRhtcIerpWc/7ni+PwAA7OR2myc4vjgQnP2v3mWeFPNQ7AJC1t4y6U9LzcgEgVbXJD33iVRSGfh9AwCAwKHQBTjY6+vNxLnB9Nq64B8DgH8OVZme5sE+xitraeBDZNi2bL5ee3CG3WEA8MHSHWa43WBasdMMEQwg9DQ0S39ZEZwi1zF1TeYYza3BOwYAAOgc5ugCHOrzImndHt+2+emFUlqiVFUvPfG+d9u0uqWXVks/uUCKpjQOhAy3W3p5le9fuP25DnxWKG3aJ40f4HOYAAAEzcEq6d0tvm3jz31QMp2/hvRi7kog1Pxrk1RR69s2/lwHSo9K738mXXKG7zECAIDgi4hm67KyMs2bN09DhgxRQkKCsrOzdffdd6u2tla33HKLXC6XnnnmGbvDBLzW0iq9utb37dISpa5J5l9fFB2Rlu/w/XihpKnFjNv+WaGZz6yq3u6IYLXqBvO7/6zQfBYag9jr0wqrdkl7/JgvwN/rwML1UmMA5wADQslHf/qBnr0lRYtfvEPFO5br2VtS9OwtKXK76boNhLLX1vre4cPf+2Bto/Svjb5tE2rcbmnPYWlrobTtgBmiGJGlsUXaecJ3IqcPT723zMxV6yt/rwOLtzOEIQAAoSrsn+javHmzZs+erdLSUiUnJ2vEiBEqLi7WU089pV27dunIkSOSpHHjxtkbaJAUbVuihQ/NVN51j2nCRT9rc50nb3BpwLiLdNnP3rY4Ovhr837pqMWFmuU7pelDpSiHlceP1JjY1+wyQ04cE+WSxmSbcxrU0774EHx7y0yhdvN+84TiMQmx0qRB5jOQkWpffP7weKRlX1p7zNpGacNe6ewca4/bWdwHjaOHdmv9W7/VgS+Xqbp8v6Jj4pXUNVOZgyZp+PSblT1ipt0hBpSv5zvr1uc169bntW3ZfG1bNl9X/2qJPYEHAX8DCFfFFVL+QWuPuXGfdOkZUqqPjeN2q2uUPi2QVuaf+uRLTi8pL9fkxS6XPfEh+A5Xm3x47W4z1N8x0VHSuH4mH+6fYV98/rI6H/Z4zFCm10yy9ridRS5gRFo+DACRJqwLXWVlZbrkkktUWlqqe+65R/fdd59SU01r5qOPPqp7771XMTExcrlcGjNmjM3RAt5bsdP6Y5bXSNtLpJF9rT+2vwoOSs8vPfnL3DFujyl8bN4vXTxOmjXS8vBggWU7pDfWS21NL9XQbJav2SV9f7o0rLfl4fmt4JAZrslqK3ZKU4bQEOY0B3ev12u/OUdR0bEanneTuvcdqZbmelWW5mvf1g8Vm5gaVl/sI+18gUi10o+nODqr1W2eqD5/lPXH9ldZtfSHT8y/bck/aF4TB0rfPYuhysPR9mLpxeVtz2HV6jYdmTbula48U5o21Oro/FddL20J8vx8bVm/xwxfmBBr/bHhP/JDAAh/YV3ouuuuu1RUVKQ777xTjz/++EnL5s2bp5deeklbtmzRwIEDlZaWZlOUgG/Kqs0TKnZYt9s5ha6iI9Kflng3PN3bm6X4GGd9scPprdklvb7+9Os1tpiC6J2zpAEO6cm63sf5+QKluNK8+naz5/jwz5o3HlBLY52u/81m9eg/9pTltZWlNkQVPJF2vkAkcn/VOG+HdbudU+iqbpB+v9h0WDuddXtMkevayXRoCSd7Dkt/XmaGvu+IR2aY6vivRjxwgo37Th6twSqNLWboR6e8TzDIDwEg/IVtf63t27drwYIFysjI0MMPP9zmOhMmTJAkjR17/Cb32muv6aqrrlL//v2VlJSkYcOG6Ze//KVqarz4dgBYYF+5fccuPGLfsX31xgbf5mD65yYzNBvCQ2Ozd0WuY1papYXrghdPoO23qdgtSfttvAbBP5Wl+UpI6d7ml3pJSu6aaXFEwRVp5wtEokPVbT+xb4XD1VJ90+nXCwWLPveuyHXM6l32ftdAYHk8Jr89XZHrRK+vd848tnbmpIX8nTgO+SEAhL+wLXS9/PLLcrvdmjNnjlJSUtpcJzHRDK5+YqHr8ccfV3R0tB566CG99957+uEPf6jf//73uvDCC+V229BdKEBamupUX13W5gvOYmdSXV7jjGJQSaW065Bv27S0mjHrER7W7/X9S3rhEWcUcRpbpFIbhi08xkkF7xNF8n2wS8/BaqgpV8G61+0OxRKRdr7eiuS/AYQfuxuZixxwL2xs8S+3XWnDEOkIjn3lUlGFb9s0NJthDJ3Azpx0vwOuAW2J5FyA/BAAwl/YDl24ePFiSdLMme2PsVtUVCTp5ELXW2+9pR49enz9/+ecc4569OihOXPmaMWKFZo+fXqQIg6u1Qvv0+qF99kdBgKg9Kj9xx/c094YTmednwWrdbulmcMDGwvs4W/Rcu1uqV/3wMYSaIeqTA9du5RW2nfszojk++Cky3+l/Z8v0jtPXqWumTnqk5unXoMmKmv4DKX3Db+LXqSdr7ci+W8A4ScU8uGcEO/8/3mhf0+9bdonXTNJigvbloLI0Zl8eMqQwMYSaK1u6bCNHb/Ih52H/BAAwl/Ypq/79u2TJPXv37/N5S0tLVq5cqWkkwtdJxa5jjnzzDMlSQcOHPA7npycHEVFef8AXXRsoq54MHAzLI+aeZtyJl/T5rI3fntep/efm5Oj1ub6Tu8HpzfjjoXKGDi5zWU/vVBKS2x/27SE4//ef0XHx6mql554/9SfX3vdjSrd8YmX0dpj0nXPqN+4y33ebm9xpbKyHDLpAjr07V+sU1KX3j5v98obH+g/rrglCBEFTsbAyZpxx8I2l53uGiB5fx1o7xqwYfNWZf3bbC+j9Z/T7oNS4O+FgXoPeudM0XUPbtDGd/9be7e8p23LXtS2ZS9KkvoMnabzb5+vLj07P9FEqJx/Z843KjpWMXGn+SPqQCDfA/4GgPaNu+xBDTn75jaXWZEP3/9fD2vHkt95F6xNhp7z7xr97V/4vF2LWxo5bpLqK4uDEBWsNPXm+eo9fJbP232+s0hZ/3ZWECIKnJj4FF3+/33Z7vJAXQfauwY0NLmVldXPy2j9Ry7gvHxYIh8CgM7IzMzU+vU+zEVygrAtdNXW1kqS6uvbvrksWLBAZWVlSk1N1cCBAzvc1yefmEb94cP97+VRUlLi0/ox8Ul+H6stXTNz1G+U70mut4pLitXSWBe0/eO4xsb2xw5MS5S6evHRiYrybr22HD58qFNFXyvU1/n3WXS73SF/bvBOa4t/kwvU19eH/GfAk9L+uJzeXgMk/68DTU1NlrxHTrsPSoG/FwbyPcjIHq3zb58vSaoq26cD25fq8yXPq3jHcr31xGW67sENio6J69QxQun8/T3fYVPnaNjUOX4fN5DvAX8DQPuG1FS3u8yKfPjo0cqQzxcyj1b6vW1pSYlqjoT2+eH02msLOZ3WlpaQ/3zHJrQ9PcUxwb4OeOQhH25HKOWD32RFPiyRDwGAXcK20JWZmamKigpt3LhRU6ZMOWlZSUmJ5s6dK0kaM2aMXC5Xu/s5cOCAfv3rX+vCCy/UuHHj/I6nd+/ePj/R5SR9evehx4pFol3tzyZcdZpfQVqCSebdbqmqoeN129tXt7Rktfbte5oobdZU6ddmDVWl6hvq5wavNNUclLpn+7ydp7Ei5D8DXdPa/7J3umuA5P11oL19RXmaLXmPnHYflAJ/LwzWe5CW0V9p027SsLwb9ep/TVPJzpUq3bVWfYfmdWq/oXr+wTrftgTyPeBvAGhfQmz739+syIeTE2JDPl+I9dT6tV1rc4O6pcarS2Jonx9Oz9Po30RSTTUHQ/7z7YqKlsftlqudNpZAXQfa209rUx35cDtCNR/8pmDmh+RDAOC/zEz/xwcP20LXrFmztH37dj3yyCM677zzlJubK0lat26dbrzxRpWVmck2Oype1dTU6LLLLlNcXJxeeOGFTsWTn5+v5ORkr9dvbJHuXdCpQ1pqZ36+4sP20xRa/rlR+mR728vaGlbhRPdfYXqsVTVI97/h3/FXfvy6kuP929YqpUel377t+3Y3XzJC8+cWBT4gWG5VgbRgje/b/f6/vq/sZ78f+IACqKlFuveVtufpOt01QOr8deDyC87S338d/L8Tp90HpcDfC4P9HrhcLmUOnqySnStVW9H5Xsmhfv6BPt+2BPI94G8AaN/6PdLfPm17mRX58PPPPKicXg/6t7FFmlqk+96Q6pt8227K0AQ9vbcgOEHBUvvLvcsNv+nO6ybrb78K/e9ED78lHWxnnq5gXwdyslK/nvM9mMgFnJcPS+RDAGAX7x8xcph58+ape/fuKiws1MiRIzV69Gjl5ORo0qRJGjRokM4991xJJ8/PdaL6+npdcskl2rNnjz788EP17u37XC9AMGSl23fs7ikK+SKXJGV2kXJ6+bZNbLQ0qeNRTOEg4wdICbG+bdOvu5TdPSjhBFRcjJSZZt/xs228BsE/+7Yukrv11OE8W5rqtX/rh5Kk9L4jrA4raCLtfIFIZGc+LElZ3ew9vjfiYqRJfkw3k5cb+Fhgj37dfc/bEuOk8W1Pcx5y7MxJyYedh/wQAMJf2PYxyMrK0vLlyzV37lwtXbpUe/fu1YgRI/Tcc8/p1ltv1eDBgyW1Xehqbm7W1VdfrfXr1+vjjz/WiBHc7BA6+tvYEN/PAUWAY66YID35oekB5o3LJ0hJDijiwTvxMdJVZ0p/X+Xd+rHR0tUTgxtTIPXPkEqO2nNsJ10HYCz/+09UX12uQeMvVUb2aMXEJ6m6vFA7Pn1JlaU7NTzvJmVkj7Y7zICJtPMFIlHPVNOhpaHZhmOnmWKAE5w3UvrigFTW/pRmJzk7h/t8uLl6ovTMR1Jz+6Pfn7z+maZI6gT9MqT1e206Nn8njkN+CADhzyEpjH+GDx+ut98+dfyympoa7d27V1FRURo1atRJy9xut/7/9u48Sqr6TPj4t3rfgAYaZOlmbZodEZBFQMUAikY0GneNJjFqEqNjMuIkM++YnNdM4hJzNCajSXzjZBKVUeJ43DdcEAVRwSCibILs0EADzd7d9f5xg4h0Q1d3dVXf6u/nnDogd/k9t+va9dx67n1+l112Ga+88grPPvssI0eOTFS4Ur0UtYKeHeDTzYkf+8QQPfHUpS1cOwH++DrsPkbLlnOGwdg+iYlLiXNir6Btz+PzoJYuf5/LyYRvnRyuC9YTe8Kc5Ykft2tb6FyY+HHVOOMvu5sV7z3JuiVvsmzeDPbtriA7rw1FJUMYcfYtDBh/VbJDjKuWdrxSS5SWBiN6wptLEj92mPLhghz47mnwwKuwqY4WbweN7h3cJKTU0r0Irj4F/t8bR78BMAJcMBKGh+j8PqF70Na/uiax42ZnwODYpwJWkpkfSlLqS+lCV10WLVpENBqlrKyMvLy8w5Z9//vf57HHHuNf/uVfyMvLY86cOZ8v6927Nx06dEh0uI1SPOBUbvzL0b7i5ZjL1fyM65P4Qlf7AujXJbFjNlavjjDtrOBLkDnLoHLf4cuH94DxfaFHUVLCUwKMLQsKWG8sgfkroeoLF8J5WTCqd9Cip31B0kJskF4dgxadGxL8VNe4MohEEjtmY/k5CN0HT6b74MnJDiNhWtrxHov/DyhVje2T+EJXehqMLk3smI3VvgBuOj24QWb2EiivPHx5v87B5/vAruH7jFf99O186Jpo7vIjbwIc2Su4JgpbO75WOTC0G7y3MrHjntgr9hbpyWYuYH4oSS1Bys7RdTQLFy4Eam9b+NxzzwHwy1/+kjFjxhz2euaZZxIap1SX47sFk+cm0sl9IS2EF7+FefDVocGEwzdMCoobEFwYXTHWIldLUNIeLhsDPzsP8v/x/udnBefEOcPCV+SC4IuoU/oldsyC7GDuM0mSmoPOhdC3U2LHHN4jyCHDJjcLJvSHn0yFH57xhXw4G647DQYVW+RKde0Lgrz3p1+DH0w8/Jro0jHhK3IddHLfxI6XFnEeO0mSmisLXV+ycuVKotFora+rrroqwZFKtctIhwsT2FWzW/vwJ/QZ6cFTMJnpwX+HsWinxsnPDs4DCP4My/wDdRnVG3p3TNx4Xx8ZtGqRJKm5+PrIQ7ldUyvIhqknJGasppIWCfL6z/PhFvltQMuWlQG9j0uda6LuRYm9Tp04MOiqIEmSmp8WmdoerdAlhcWArkGbiVjs2AMVu4M/6ys9LbjLL71F/raQmq+0CFwyOvYv+Brye2Bot+AlSVJz0qFV8OR+LBryOQjB/EUFIXyaS0p1Zw+NvUNDQ34PdC6EyYOOuZokSUqSFnlv9syZM5MdghQX542AdRWwZmv91r/7+djHuHCkd61JzVVRq6DY9d+zob5d9WP9PdCpTfDlniRJzdH4vsHctQs+q9/6DcmHT+4btA6X1PxkZ8JV4+C+l2FfVf22ifX3QH42XDnuUHcISZLU/PiMhhRiOZlw3QTo0rZp9n/+iKA9mqTma1gPuGg0NEXnmeNaw3dPCy7uJUlqjtIicPlJMLi4afZ/UimcO7xp9i0pPkrawzWnNk2b7bys4Jrbmz8lSWreLHRJIVeQA9dPhIFd47fPnEz4xtjgDllJzd/o3vDNkw9NLB4PfTvBDyZBm7z47VOSpKaQkQ5XjQ+evIqXtAicOSR4qjns8xhJLUHv44Lr4qJW8dtnpzZww+SgkCZJkpq3Ftm6UEo1eVlw9Skw71N44j3Ys7/h++rXGS4eDYV+uS2FypAS6FEE//MOfLim4fvJzgjuXB/dGyJ+sSdJCon0tKCt9+BieHQubKls+L66FAZz1Ba3i1t4khKgpD1MOxOeXgCzPql/a+8vS4vAVwbA6YNtVyhJUlhY6JJSRCQCI3tB/84weym8vQy213Ny3QjQrwuM6wMDuvrlthRWrXPh2yfDx+vhzSXw0dr6X+AX5MCY3jC2zEK3JCm8+nSCaWfBO8uDz8KNO+q/bbf2MLYPDO/hl9tSWGVlBEXvkb3gjU9g/io4UF3/bUf0hPFl0LmwScOUJElxZqFLSjGtcuGMITBpUPAl94rNsGYrrNl26EmvtAi0L4CSdsFdb4OL49viQVLyRCLQv0vw2lIJC1fD6q3Bq3wn1Pyj8pWTCV3bBner9+oQtD/1Sz1JUirIzghacI8rg+WbYMmGIB9evRV27g3WiRC05y1uF+TE/bsEhS5JqaG4XfBk5jnD4O+r4bMtwe+ADRVQVROsk5keFLSK20H39kGHhNw4tgKXJEmJY6FLSlHpaTC4JHgdVBOFaDRYJin1tS+AU/sf/m/VNUExzPlGJEmpLhKB0uOC10HRaJATp0XsYiC1BPnZMKY0eB1UXRMUu9O8LpYkKWVY6JJakLQIQUYvqcWy0C1JaskiEUg3H5ZaNPNhSZJSjx/vkiRJkiRJkiRJCiULXZIkSZIkSZIkSQolC12SJEmSJEmSJEkKJQtdkiRJkiRJkiRJCqWMZAeg2mWlw+0XJTuK+stKT3YEkqRUErbPQYj/Z2HYfgYt/fghvj+Dln78kiS1dOYC/gwkSfVnoauZikQg23dHktRC+Tnoz8Djb9nHL0lSS2cu4M9AklR/ti6UJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihlJDsASWrpolGoOZDsKJpGWiZEIsmOIpyiUdhfnewoYpOVHr/3u6UfP4TvZxDv45cktRzmw6pN2HIhMB82H5QkJYuFLklKspoD8Oq9yY6iaUy4AdKzkh1FOO2vhlumJzuK2Nx+EWTHKbNo6ccP4fsZxPv4JUkth/mwahO2XAjMh80HJUnJYutCSZIkSZIkSZIkhZKFLkmSJEmSJEmSJIWShS5JkiRJkiRJkiSFkoUuSZIkSZIkSZIkhZKFLkmSJEmSJEmSJIVSRrIDkKSmEo3C9j2wegus3grbdsHu/cGyPfth3goobgfHtYY0y/4pqSYKm3cE7/+arYfe/9374ZkFUNIeStpBYR5EIkkNVZIkqUns2hfkQqu3wOadh+fDs5cGuVCXQshIT2qYaiLRaHAddDAfrtj9hXPgALz7aXAOdGgNaebDkiQppCx0SUo5+6rg/ZXw5hJYu632dfZXw1/fDv7eKgfGlAavtvkJC1NNaPseeHsZvL00+PuXHaiGlxYd+u/ObWBsGYzoCTmZiYtTkiSpKVTXwKK1QT68ZEPt6+yvhsfeCf6enRHkQWP7QJe2iYtTTWfvP4pYby6BDdtrX2d/FfzlreDvbXLhpD4wujT4uyRJUphY6JKUMmqiMHsJPPNBcGFXXzv3wosfBoWP0b1h6gmQm9V0carp7DsATy8I7k6uidZ/u/Xb4fF58NR8OGMInNLXp/wkSVI4LVoT5DXbdtd/m31VQf40eyn06wwXjoR2BU0Xo5pOTQ289jG8sDB4X+tr+x547u/BdmPL4KtDgwKoJElSGJi2SEoJ5Tvh0bmwbGPD9xGNBk8BLV4HF42C/l3iF1+ifLD8Nf75/gmH/VtOVj7FHcqYOOwKzh37A9LTU/NX/9KN8Ogc2FLZ8H3sq4In34cPPoNLxgRtLSVJksJg9z544j2Y92nj9vPxerj9GThnWNDxIGztnVtyPrxxOzw8B1aVN3wfNVGY9Ql8tBYuGQ2lx8UvPkmSpKaSmtmdpBZlVTk88OqhXvONVbE72N/5I2B83/jsM9EmDL2Ekf3OJEqUbTs38NJ7f+b+p37IZ5sWc9PXf5/s8OJuzjKY/k5QrIyHleXw6+fhO6dC747x2ackSVJTqdgNv3sFNu2Iz/72VcH/vANrtsHXR4TzSfeWlg8v2wh/eC22p7iOZksl/PYVuHgUjOodn31KkiQ1lRCmq5J0yOqt8J8z41fk+qIZ7wZ3M4ZRn67DmDj8ciYNv4ILT72Ze38whw5tinnunT9SUbk52eHF1ZzlwdN88SpyHbT3ADwwEz5NrR+XJElKMdv3wH0vxa/I9UVvLQ0KXvHOsxKhJeXDKzYFN+rFq8h1UDQKj8yBucvju19JkqR4s9AlKbQq9wYXdLHMxxWrGe8GrQzDLjcrn37dRxONRlm3JXWuVJdvhOlzm27/+6uDO2MrYpjjQuH10RsP8fhtpyY7DEmS6q26Bh58Hcob0br5WOYsh1cXN93+EyVV8+GK3fCH1+FAddON8ejcoJgmSZLUXNm6UFJoPT4vKHbF4odnQOtc2LEH7n6+fttMnwu3nAW5WbHH2Jys/8cFfeu8dkmOJD72VQVzEMRyh3FD3v/d++F/5gZtDMM2R4UkSUptMz+Cz7bEtk1D8qFnP4ABXaFTm9hjbE5SLR+ORoM5avfE2N0i1nMgGg3y7mlnQpbfIkmSpGbIFEVSKH3wGSz4LPbtWudCYV5s21Tshiffh4tHxz5esuw9sJvtu8qJRoM5CZ56+36WrZ1Pv5KRFHcoS3Z4cfHMgmDugFg05P0H+GhdMLH7yF6xb6vm7+U/XM2SOY9SU1NFTdUBfvftAgCu+8N20tLSkxydJEm127Adnl8Y+3YNyYeqauDht+GfToe0kNz40xLy4XdWwMfrY9+uIedA+U545gP42vDYx5MkSWpqLaJ1YXl5OdOmTaO0tJScnBxKSkq48cYb2bVrF9/+9reJRCLcd999yQ5TUj1Fow27qG+MuStg267EjtkYf37xVr7+0w5c8LOOXHP3EJ56+3eMG3QeP7vqyWSHFhc798LspYkd88WFUBPC+SnWfPQa91we4b1n7qpznXsuj/DkXV9NYFRNa/umFbzy4DX8+eZ+/PZbedx/TVv+PK0/L95/Jas/evWI9Sd+549878FKTvvm/XTpO57vPVjJ9x6sTJkiV0s8BySpJXh5UdC6MFE+2wIfh6ild6rnwzVRePHDxI755pLYO2o0B+ZCgVhzZEmSwiTln+hasGABU6ZMYcOGDeTn5zNgwADWrVvHvffey/Lly9m6dSsAQ4cOTW6gkurt082wviKxY0ajwWTcZw1N7LgNddaoazh5yAVU1Rzg0/ULmf7a7ZRvX0NWZs7n6yxcMYufPDjliG2rqvdTU1PNC3c0YaP/RpqzLLFf7EAw98Un66F/l8SOq9hsXPEuj//8FNLSM+k/7hu07zqQqgN7qNiwlFULXyQztxUlAyYkO0xJkhqlci/MX5X4cWcvDVoYhkGq58Mfr4u9u0FjVdfA3OXwlYGJHVeNZ44sSUp1KV3oKi8v5+yzz2bDhg386Ec/4tZbb6VVq1YA3HHHHdxyyy1kZGQQiUQYMmRIkqOVVF+JfpLnoDnL4YwhkB6CZ2G7FvVhWNlEAEb2m8KgnuO46XfjuGfGdfzr5Y8CMLjXeJ76+eFXx+Xb1/H9e0dwzknXJzzm+opG4a1lyRn7raUWupq7uU/8jKp9u7n05wvo0P34I5bvqtiQhKgkSYqvd1Yk/qYfgI/WBl0O2uYnfuxYpXI+DEnMh5fBaQOcuzZszJElSakuBF/XNtwNN9zAmjVruP7667nrrrs+L3IBTJs2jeOPP56qqip69OhB69atkxippFgs25iccXfuhU07kjN2Yw3scRITh13Bax9MZ9HKt2pdZ3/VPn725/MY1GMcl37lJwmOsP62VCavjeTyTUGhTc1XxYal5BS0r/UCHiC/sFOCI5IkKf6SlQ9HCfKhMEqlfLgmmrxzIJm5uBrOHFmSlOpSttC1ePFipk+fTlFREb/4xS9qXWf48GAW1eOPP/RBP2vWLCZOnEjnzp3Jzs6muLiYiy66iMWLFyckbklHt2MPbN+TvPFXb03e2I112cT/Q1paOv/1wr/XuvyeGdex/8Bebr7oocQGFqM1SXwPdu9PfIuYeKnav5s9O8trfaWSNh17s7dyC8vm/S3ZoTQ7LeUckKRUF40mNyc1H06+LTth74HkjR/Wc6Al50LmyJKkVJeyrQsfeeQRampquOyyyygoKKh1ndzcXODwQte2bdsYPHgw1157LR07dmTNmjX84he/YMyYMXz44YcUFxcnJH5JtUtmkQOCi7qRvZIbQ0N1LSplwvEX88r8v7JwxSwG9xr/+bIn3ryXuYuf5r4b5pGTlZfEKI9tzbYkj78Vilode73mZs6MW5kz49Zkh9HkRp77b3z24Us8c8/5FHbqQ5eycRzX60SK+59Ku679kx1eUrWUc0CSUt2OPUGngWRZvSV5YzdWquTDyS40rdkKx3dLbgwN0ZJzIXNkSVKqS9lC18yZMwGYMKHuyTTXrFkDHF7omjp1KlOnTj1svRNPPJG+ffsyY8YMbrzxxgbF06dPH9LSUvYBOilhug07n5EX3VPrsh+eAa1zj75965xDf/70a3Wvt2MP3P38kf/+10f/lxvPjW+//qyMXH5/fWImHrvkK//Kqwse4b9e/Hfuuu5VABYse5U/PnML/3H1c3Rq1yOu4/Up68P+qvg+gjfs/DvoNfLSWpcd6xyo7/sPdZ8DN/zox6yY89/1jLbh0jNz+dpt8TsvBk24hj6jLqh12RO/nBSXMcr69KH6QHze74Yef+c+Y7jktvd4/9lfsfKD5/jojT/x0Rt/AqBL3/FMvvYh2nSsvVqdlp5JRtYxfokcRTyPH8J3DsT7+CVJtWvTuT+T/umlWpclIh9e8OESir91Wj2jrR/z4dj0HnMVJ5x7W63LEnEO3P/gf3PtEz+uZ7QNF7ZcCJpHPlybxuTIsTAflCQ1RqdOnXj33XcbtG3KFrpWrVoFQPfu3WtdXlVVxezZs4HDC121ad++PQAZGQ3/ca1fv77B20o6pLC07r5xrXOhsJ43X6al1X/dL9p3oIq1a9fGvuFR5GTG747R43ufykt31j2JVPfj+vPCHdWf//eGrSu57S8X8p2v3snxvU+NWxwHrV+3jr0Hdsd1nwP27q9zWX3PgYa+/wA7K3fH/RyoTUZ2fO8kLuzUh26DJsZ1n1+2bv06qvbF5/1uzPEXlQxm8rUPAbCjfBVrF7/Oh6/9kXWfzOKpu8/hktveIz0j64jt+o29jH5jL2vwuPE8fgjfORDv45ck1e5AVt1z6SQiH66JRsyHY9AU+XDHyronyUrEObB33wHz4To0l3y4Ng3NkWNhPihJSpaULXTt2hUkfnv21H4nyfTp0ykvL6dVq1b07NnziOXV1dXU1NSwatUqfvzjH9OpUycuvPDCmGLIy8ujsrKScePGsWnTJiKRSOwHIukwrVvl17lsRz1uHGudE1zQ1dTAjqO0fKlrX1kZaXTt2vXYA8UgK6PhT5A0xt79u7n1oXMZM2Aq546N71NqB3Xu0iXud7DmZNf90XWsc6C+7//R9lWQnxP3c6A26ZnJOS8ao0vnLnG9gzUeWhd1p/X4b9Bv3BU89n/Hs37JbDYsf4eufcfFZf9fFM/jh/CdA/E+fklS7Vq3bVPnskTkwxGqzYdj0BT5cEF+Tp3LEnEO5GSlmw/XoTnmw7VpqhzZfFCS1BidOtV9Q9expGyhq1OnTmzbto3333+fMWPGHLZs/fr13HzzzQAMGTKk1gLUKaec8vkTX6WlpcycOZMOHTrEFEMkEiE/P5/58+c38CgkfdnyjfCbl2tfVltbjS/76deCuxZ37IWfPhH7+FdfcR5P/Oq82Dc8iur98Oq9cd1lvcxaOIMV6z9gbfkSXvtg+hHLH/znj+jYtnHN95cuWUp6424KPMKLH8KzH9S+7FjnQGPff4Df/+Z2+ne5vWEbx2BfFdxy5NvSrC1ZupSj1CFjEu/jj0QidOo9ivVLZrNrW9PcgRzP44fwnQPxPn5JUu1274efPFb7skTkw2OG9eNP/5gGIF7Mh2OzaC384bXalyXiHLjxu1cy8b4rY98wRmHLhaB558O1iXeObD4oSUqWlP34mThxIosXL+b2229n0qRJlJWVATBv3jyuuOIKysvLARg6dGit2z/44INUVFTw6aefcueddzJ58mRmz55Nt24hnHFVSiFd20EEqLsZSdMqbpekgZvApOFXMGn4FckOI2YlSX4Pkj2+jm7VwpcoGTCBtPTDU5yq/Xv4bOGLALTrOiAZoUmSFBd5WVDUCsp3Jmd88+HkS3Y+muzxFTtzZElSqkvZQte0adN4+OGHWb16NQMHDqRfv37s3buXZcuWMWXKFHr06MELL7xQ5/xcffv2BWDUqFGcccYZ9OjRgzvuuIP77rsvkYch6UtyMqFDa9i0Iznje1GXfMl8DwrzoKDuTjFqBmb99Sb27NxCr2FTKSoZTEZ2Hju3rOaTtx6mYsMS+o/7BkUlg5MdpiRJjVLSLnmFLvPh5GudC21yYXuSOsSlUrGzpTBHliSlupQtdBUXFzNr1ixuvvlmXn/9dVauXMmAAQN44IEH+M53vkPv3r0B6ix0fVFhYSGlpaUsW7asqcOWVA8Duyan0NW5ENrWPUWYEqQgB7q3h1VbEj/2wKafikCNNP6yu1nx3pOsW/Imy+bNYN/uCrLz2lBUMoQRZ9/CgPFXJTtESZIabWBXmL8q8eNmZUDpcYkfV0ca2BXeSsJXFD2KID878eOqccyRJUmpLmULXQD9+/fn6aefPuLfKysrWblyJWlpaQwaNOiY+9m0aROffPIJo0aNaoowJcVobB94dXFyxq1lSj8lwdgyWPV24scdV5b4MRureMCp3PiXozf7PNbyMOk+eDLdB09OdhjNSks7BySpJRjaDZ54D3btS+y4I3pAbpznm1LDjC1LTqHLfDiczJElSakupQtddVm0aBHRaJSysjLy8vIOW3b55ZdTWlrK0KFDKSwsZOnSpfz6178mIyODm266KUkRS/qiolbQrzN8vD5xY2ZnwIieiRtPR3dCd3jy/cR+udOrQ/BUnyRJUrJlpMPo3vDKR4kdd2wIixypqmtb6NkBPt2cuDHzs4MiqyRJUnOTluwAkmHhwoVA7W0LR48ezbPPPss3v/lNpkyZwp133sn48eNZsGABpaWliQ5VUh3OPgHSEvh01ZQhwfxgah4y0+GsY3eejZtIBKYOS9x4kiRJx3LaAGidwLlDT+wVFFfUfEw9IbEdJ84eGhRZJUmSmhsLXV9y/fXX884777Bt2zb27NnDkiVLeOCBB+jevXuiw5R0FF3bwuQEzZXbswOc3DcxY6n+xpRCWafEjDWhfzAfgSRJUnORnw0XJqi7fptc+Jo3/TQ7PTvAqf0SM1a/zjCqd2LGkiRJilWLbF14tEKXpPCYNBAWr4NV5fXfZseew/88ltwsuHQ0pDXD2wLWbF7KndOvZPuucvJz2nDzRQ/Ro9PAmNbbf2AvP//rxaza+BHZmbkUFnTkhvP+k65FwROscxc/y0Mv/Bs1NTXU1FRxwak3M3nElcfcLhEiEbh4FPzq+fq3MIz1/YegqDplSOzxSZIkNbVBxUELwznL679NrPlQJAIXj4a87NjjS4SWnhNPGQKfrId1FfXfJtZzoCAbLhrlfMWSJKn5apGFrpkzZyY7BElxkJ4G15wK970M6yvqt83dz9d//1kZwf47tG5AcAlwz4xrOXPUNZx+4lW88ffHuXP6Vfz2xnkxr3fmqGsY2W8KkUiE/519H3c/djW/+u5rRKNRbn/kcu667jV6dRnChq0r+dad/Rg36Dwy0jPr3C6R2hXAdafBb1+GvQeOvX4s7z9Ah1Zw3YSgVaIkSVJzdMFIqNwHH66p3/qx5EMR4JLR0L9Lg0JLiJaeE2dlBPnwb16CzTvrt00s50BuVrD/tvkNi0+SJCkRmuEzCpJUf/nZcP1E6B7ntnL52fC9rwTtQJqjbZWbWLLmXSYOuxyA8YPPZ3PFataWL4tpvazMHEb1P5PIP27P7N9tNBu3rTy0g0iEyr0VAOzeu4PWee3JzMg+9nYJVNIuOAfiPUdFcVu4YRK0yo3vfiVJkuIpPQ2+OR6G94j/fq8YCyN7xXe/8WROHGidCz+YBF3iPIda61z4wUQobhff/UqSJMVbi3yiS1Jqyc8OChIvLYIXF0JNtHH7G1ICF5zYvAscmytW0651Z9LTg1/jkUiEjm27sanis8NapdR3vYOeePMexgw85/N1/+2y6fzsv84jJyufyj3buPUbfyMzI+uo2yVDcTuYdhbMeBfmr2rcvtIi8JUBcPpgJ9uWJEnhkJ4Gl58EfTvD396t35PuR1PSDi4dA50L4xJekzEnPqR1Ltx0Ojz/d5i5GKKNvCYa3gPOGxFca0mSJDV3FrokpYT0NDhjMAwuhqfmw8frY99HpzYweRCc0D35/edv+M0Y1pYvrXXZf940v0nGfPiV/2Bd+TLuuPYVAKqrq/jrK7dx65V/Y0ivk/lk9Tz+/U9T+f2PFtImv6jO7ZKlIAeuHBe8f8//PbZ5Cg7qcxycfQJ0ax/38CRJkppUJBI8fVXWCZ5eENz8U10T2z7a5MIp/YJXejPo/2JOHJvM9CCXHVISnANLN8a+jy5tYcpgGFwS9/AkSZKajIUuSSmla9ugh/zmnTB7CSxae/Re9a1yoPQ4OKkPlHZMfoHroHt/8PZRl2dmZLN1x3qqq6tIT88gGo2yadtndCzsdth6HQpL6rXeY6/dxZsf/o07rnmZnKw8AJatW8CWHesY0utkAPqWnEhRm2KWrZ3P8LJJdW6XbENKgoLnp5th9lJYthG2H2Wi7aJWMKALjO0Dx7VJXJySJElNoTAveLrrnGEwd3lQ8FpfUXfXg5xM6FEEY0phUHHzKHAdZE7cMN2L4PsTYcP2IB9evBbKK+tev01ucMPX2LLgXGgu10SSJEn1ZaFLUkrq0ArOHR689uyHNdtg2y6oqg4u3vOzg3Z3bXLDeSHXtqAjpV2H8fL7f+H0E69i1sIZFBUWH9F6pT7rPf763by64BFuv+ZlCnILP//3joUlbN25nlUbF9P9uP6sLV/G+i3LKenQ96jbNQeRCPTqGLwgKHSt2QqVe4M7mzPSgy+BittB3pFdZyRJkkKvVQ5MHBi8DlTDum2waQdU1QS5Uk5mcJNY+4KgdXMYmRMfXac2cP4IYATs3h/kwxW7D10TFeQcuiaSJEkKs0g02tjOzZKkxqjeD6/eG/t2qzd9wp3Tr2LH7i3k5bTm5gv/RM/OgwH41WNXM2bAVE4aOPWo622uWMOlPy+hc7te5Ga3AiArI5vf3DAXgJnzH+GRmf9BWiSNmmgNl5z2Y0474dJjbnfQhBsg3UJSg+yrglumJzuK2Nx+EWTH6Raaln78EL6fQbyPX5LUcjQ0H4bmnxObDzdc2HIhMB82H5QkJYuFLklKssZc2Dd3Xtg3XEu/sG3pxw/h+xn4xYYkqaHMh1WbsOVCYD5sPihJSpZm1H1bkiRJkiRJkiRJqj8LXZIkSZIkSZIkSQolC12SJEmSJEmSJEkKJefokqQki0ah5kCyo2gaaZkQiSQ7inCKRmF/dbKjiE1Wevze75Z+/BC+n0G8j1+S1HKYD6s2YcuFwHzYfFCSlCwWuiRJkiRJkiRJkhRKti6UJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKFnokiRJkiRJkiRJUihZ6JIkSZIkSZIkSVIoWeiSJEmSJEmSJElSKP1/i9E54z7X3OQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "uccsd.get_circuit(trotter=True).draw(output=\"mpl\")" ] }, { "cell_type": "markdown", "id": "713ced03-6ef7-42a1-9b16-d26b04cd3dbd", "metadata": {}, "source": [ "## Useful Attributes\n", "TenCirChem chooses to expose its internal data whenever possible and in the simplest way.\n", "The intention is to make TenCirChem easy to hack and useful as a handy toolbox." ] }, { "cell_type": "code", "execution_count": 8, "id": "b7db036d-ae52-4538-9971-ca9fee291e60", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(4, 2)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "uccsd.n_qubits, uccsd.n_elec" ] }, { "cell_type": "code", "execution_count": 9, "id": "8728730d-c9d9-4d17-a704-4827abc464c0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(,\n", " )" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# PySCF objects\n", "uccsd.mol, uccsd.hf" ] }, { "cell_type": "code", "execution_count": 10, "id": "773edc08-f2f8-4bd5-8f60-e686f7213e33", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(-1.116706137236105,\n", " -1.1298675557838804,\n", " -1.1372745709766439,\n", " -1.1372744055294384,\n", " -1.1372744055294384,\n", " 0.7141392859919029)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "uccsd.e_hf, uccsd.e_mp2, uccsd.e_ccsd, uccsd.e_ucc, uccsd.e_fci, uccsd.e_nuc" ] }, { "cell_type": "code", "execution_count": 11, "id": "cb778365-b0cb-4e84-aaa8-a19781550ec3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((2, 2), (2, 2, 2, 2))" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# one and two electron integral in molecular orbital basis\n", "uccsd.int1e.shape, uccsd.int2e.shape" ] }, { "cell_type": "code", "execution_count": 12, "id": "2e0e3065-66f5-4d0e-82d1-6b3b28539352", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.7141392859919029 [] +\n", "-1.2527052599711868 [0^ 0] +\n", "-0.48227117798977825 [0^ 1^ 0 1] +\n", "-0.6745650967143663 [0^ 2^ 0 2] +\n", "-0.18126641677772592 [0^ 2^ 1 3] +\n", "-0.6635375947675042 [0^ 3^ 0 3] +\n", "-0.18126641677772592 [0^ 3^ 1 2] +\n", "-0.47569770336145906 [1^ 1] +\n", "-0.18126641677772592 [1^ 2^ 0 3] +\n", "-0.6635375947675038 [1^ 2^ 1 2] +\n", "-0.18126641677772592 [1^ 3^ 0 2] +\n", "-0.6974673850129379 [1^ 3^ 1 3] +\n", "-1.2527052599711868 [2^ 2] +\n", "-0.48227117798977825 [2^ 3^ 2 3] +\n", "-0.47569770336145906 [3^ 3]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Hamiltonian as openfermion FermionOperator\n", "uccsd.h_fermion_op" ] }, { "cell_type": "code", "execution_count": 13, "id": "5ab0106b-b259-4fb4-85e6-33eae4ace027", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(-0.09835117053027564+0j) [] +\n", "(0.04531660419443148+0j) [X0 X1 X2 X3] +\n", "(0.04531660419443148+0j) [X0 X1 Y2 Y3] +\n", "(0.04531660419443148+0j) [Y0 Y1 X2 X3] +\n", "(0.04531660419443148+0j) [Y0 Y1 Y2 Y3] +\n", "(-0.22297018776182556+0j) [Z0] +\n", "(0.12056779449744456+0j) [Z0 Z1] +\n", "(0.17436684625323448+0j) [Z0 Z2] +\n", "(0.16588439869187604+0j) [Z0 Z3] +\n", "(0.1712591626176813+0j) [Z1] +\n", "(0.16588439869187596+0j) [Z1 Z2] +\n", "(0.16864127417859157+0j) [Z1 Z3] +\n", "(-0.22297018776182548+0j) [Z2] +\n", "(0.12056779449744456+0j) [Z2 Z3] +\n", "(0.1712591626176812+0j) [Z3]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Hamiltonian as openfermion QubitOperator\n", "uccsd.h_qubit_op" ] }, { "cell_type": "code", "execution_count": 14, "id": "6c3556dc-a36b-4d37-b3b4-5299508a2ff2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(None, array([[[[-0.07260815]]]]))" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# t1, t2 amplitude based on MP2 or CCSD (determined by the `init_method` argument)\n", "uccsd.t1, uccsd.t2" ] }, { "cell_type": "code", "execution_count": 15, "id": "9b7cab6f-60fb-41ff-b73d-1214129a4b53", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "([(3, 2), (1, 0), (1, 3, 2, 0)], [0, 0, 1], [0.0, -0.07260814651571333])" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# `param_ids` maps excitation operators to parameters.\n", "# Some excitation operators share the same parameter due to symmetry\n", "# refer to the documentation for the convention of excitation operators\n", "uccsd.ex_ops, uccsd.param_ids, uccsd.init_guess" ] }, { "cell_type": "code", "execution_count": 16, "id": "cdca2558-d429-4760-9138-ffa02f99ee73", "metadata": {}, "outputs": [ { "data": { "text/plain": [ " e: -1.1372744055294384\n", " fun: array(-1.13727441)\n", " hess_inv: <2x2 LbfgsInvHessProduct with dtype=float64>\n", " init_guess: [0.0, -0.07260814651571333]\n", " jac: array([-9.60813938e-19, -1.11022302e-16])\n", " message: 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'\n", " nfev: 6\n", " nit: 4\n", " njev: 6\n", " opt_time: 0.010929584503173828\n", " staging_time: 3.337860107421875e-06\n", " status: 0\n", " success: True\n", " x: array([ 1.08284918e-16, -1.12986561e-01])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Scipy `OptimizeResult` object\n", "uccsd.opt_res" ] }, { "cell_type": "code", "execution_count": 17, "id": "9bbd78fd-8cf4-4a0a-8187-ca4896d32ee8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1.08284918e-16, -1.12986561e-01])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# the optimized parameters\n", "uccsd.params" ] }, { "cell_type": "code", "execution_count": 18, "id": "ec0d9452-36cb-464d-97a1-26539b787c8d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 9.93623806e-01, 1.08284918e-16, 0.00000000e+00,\n", " 0.00000000e+00, 1.08284918e-16, -1.12746318e-01, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00])" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# optimized circuit statevector\n", "uccsd.statevector()" ] }, { "cell_type": "code", "execution_count": 19, "id": "3e628f4a-abe5-4cf8-8230-591c68878948", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 9.93623806e-01, 1.08284918e-16, 1.08284918e-16, -1.12746318e-01])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# configuration interaction vector\n", "uccsd.civector()" ] }, { "cell_type": "code", "execution_count": 20, "id": "1a06c242-7b28-41f2-8077-a90997861687", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 5, 6, 9, 10], dtype=uint64)" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# bitstring for each element in the CI vector\n", "uccsd.get_ci_strings()" ] }, { "cell_type": "markdown", "id": "bf3b8b0c-9dee-444c-9a8e-7c628ed4e4ab", "metadata": {}, "source": [ "## Active Space Approximation\n", "\n", "TenCirChem offers the simplest API for active space approximation among available packages." ] }, { "cell_type": "code", "execution_count": 21, "id": "85c17b8f-e225-44df-88e0-0298072b7630", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "################################ Ansatz ###############################\n", " #qubits #params #excitations initial condition\n", " 4 2 3 RHF\n", "############################### Energy ################################\n", " energy (Hartree) error (mH) correlation energy (%)\n", "HF -4.149619 1.343542e+01 -0.000\n", "MP2 -4.157573 5.480558e+00 59.208\n", "CCSD -4.163054 -1.932076e-04 100.001\n", "UCCSD -4.163054 -8.881784e-13 100.000\n", "FCI -4.163054 0.000000e+00 100.000\n", "############################# Excitations #############################\n", " excitation configuration parameter initial guess\n", "0 (3, 2) 1001 1.112312e-15 0.000000\n", "1 (1, 0) 0110 1.112312e-15 0.000000\n", "2 (1, 3, 2, 0) 1010 -1.377274e-01 -0.082065\n", "######################### Optimization Result #########################\n", " e: -4.163053957291894\n", " fun: array(-4.16305396)\n", " hess_inv: <2x2 LbfgsInvHessProduct with dtype=float64>\n", " init_guess: [0.0, -0.08206541779079227]\n", " jac: array([-1.21074365e-17, -5.55111512e-17])\n", " message: 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'\n", " nfev: 6\n", " nit: 4\n", " njev: 6\n", " opt_time: 0.003999471664428711\n", " staging_time: 1.6689300537109375e-06\n", " status: 0\n", " success: True\n", " x: array([ 1.11231160e-15, -1.37727434e-01])\n" ] } ], "source": [ "from tencirchem.molecule import h8\n", "\n", "# (2e, 2o) active space\n", "uccsd = UCCSD(h8, active_space=(2, 2))\n", "uccsd.kernel()\n", "uccsd.print_summary()" ] }, { "cell_type": "markdown", "id": "105b9dfb-9222-42ab-be07-8b0b23c8c6bd", "metadata": {}, "source": [ "The reference energies including MP2, CCSD nad FCI are also based on the active space." ] }, { "cell_type": "markdown", "id": "97009d72-e8c7-4760-9613-6b9e77be0090", "metadata": {}, "source": [ "## Starting from the Integrals\n", "One may start the UCC calculation from custom integrals without the need to define a molecule." ] }, { "cell_type": "code", "execution_count": 22, "id": "5620f42b-aa6b-4900-95ab-98c20f08097b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-4.163053957291894 -4.163053957291894\n" ] } ], "source": [ "uccsd_from_integral = UCCSD.from_integral(uccsd.int1e, uccsd.int2e, uccsd.n_elec, uccsd.e_core)\n", "# the energy is the same with the last calculation\n", "print(uccsd_from_integral.kernel(), uccsd.e_ucc)" ] }, { "cell_type": "markdown", "id": "b8ab3f9d-94a3-4b20-a3b7-42846329a082", "metadata": {}, "source": [ "## Feeding in Custom Parameters\n", "\n", "In TenCirChem, it is also fairly easy to feed in customized parameters to get desired properties" ] }, { "cell_type": "code", "execution_count": 23, "id": "88ffc492-8e6e-4ee2-ad86-417199683eb4", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "params = np.zeros(uccsd.n_params)" ] }, { "cell_type": "code", "execution_count": 24, "id": "4bd914bd-cd38-490d-b496-c093b32c5996", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(-4.149618533807672, -4.1496185338076685)" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "uccsd.energy(params), uccsd.e_hf" ] }, { "cell_type": "code", "execution_count": 25, "id": "1b06a3bc-c88e-428b-9f1c-5d025a4e1579", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(-4.149618533807672, array([-2.27679890e-15, 1.93866451e-01]))" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# energy and gradient, can be used in optimization\n", "# one caveat is that TenCirChem by default uses float32, while SciPy assumes float64\n", "uccsd.energy_and_grad(params)" ] }, { "cell_type": "code", "execution_count": 26, "id": "7b38c34c-fe1e-41dd-b05e-19b44f5a88e6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "uccsd.statevector(params)" ] }, { "cell_type": "code", "execution_count": 27, "id": "450d9fc8-40cc-49ce-aa77-f21865614aa7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1., 0., 0., 0.])" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Configuration Interaction vector. Compatible with PySCF.\n", "civector = uccsd.civector(params)\n", "civector" ] }, { "cell_type": "code", "execution_count": 28, "id": "a2e9b325-4544-443c-b0a7-324db77da8c6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-4.149618533807672" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# calculate the energy by hand\n", "civector @ uccsd.hamiltonian(civector) + uccsd.e_core" ] }, { "cell_type": "code", "execution_count": 29, "id": "a19b0abb-c4c0-47b2-b5c3-267a008b9777", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "################################ Ansatz ###############################\n", " #qubits #params #excitations initial condition\n", " 4 2 3 RHF\n", "############################### Energy ################################\n", " energy (Hartree) error (mH) correlation energy (%)\n", "HF -4.149619 13.435423 -0.000\n", "MP2 -4.157573 5.480558 59.208\n", "CCSD -4.163054 -0.000193 100.001\n", "UCCSD -4.149619 13.435423 0.000\n", "FCI -4.163054 0.000000 100.000\n", "############################# Excitations #############################\n", " excitation configuration parameter initial guess\n", "0 (3, 2) 1001 0.0 0.000000\n", "1 (1, 0) 0110 0.0 0.000000\n", "2 (1, 3, 2, 0) 1010 0.0 -0.082065\n", "######################### Optimization Result #########################\n", " e: -4.163053957291894\n", " fun: array(-4.16305396)\n", " hess_inv: <2x2 LbfgsInvHessProduct with dtype=float64>\n", " init_guess: [0.0, -0.08206541779079227]\n", " jac: array([-1.21074365e-17, -5.55111512e-17])\n", " message: 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'\n", " nfev: 6\n", " nit: 4\n", " njev: 6\n", " opt_time: 0.003999471664428711\n", " staging_time: 1.6689300537109375e-06\n", " status: 0\n", " success: True\n", " x: array([ 1.11231160e-15, -1.37727434e-01])\n" ] } ], "source": [ "# set the parameters, and use the class as usual\n", "uccsd.params = params\n", "uccsd.print_summary()" ] }, { "cell_type": "markdown", "id": "40212b40-6294-4064-8c5c-ee2963e782ca", "metadata": {}, "source": [ "## Reduced Density Matrix\n", "Calculate reduced density matrix in atomic orbital or molecule orbital basis " ] }, { "cell_type": "code", "execution_count": 30, "id": "1d97185e-809b-486c-b343-bbd4a7b372aa", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((8, 8), (8, 8, 8, 8))" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "uccsd.make_rdm1().shape, uccsd.make_rdm2().shape" ] }, { "cell_type": "code", "execution_count": 31, "id": "11b0b0f1-557f-4b87-9277-1be700fbe7a3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((8, 8), (8, 8, 8, 8))" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "uccsd.make_rdm1(basis=\"MO\").shape, uccsd.make_rdm2(basis=\"MO\").shape" ] }, { "cell_type": "markdown", "id": "23bf9027-bee0-4e7c-b699-efcebf9e235d", "metadata": {}, "source": [ "Note that the RDM is for the whole space, beyond the active space." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" } }, "nbformat": 4, "nbformat_minor": 5 }